myalloc.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. 3APA3A simpliest proxy server
  3. (c) 2002-2016 by Vladimir Dubrovin <3proxy@3proxy.ru>
  4. please read License Agreement
  5. */
  6. #include "proxy.h"
  7. #ifndef WITH_STD_MALLOC
  8. #include "proxy.h"
  9. #define MEM64K 65536
  10. #define MEM16K 16384
  11. #define MEM4K 4096
  12. #define MEM1K 1024
  13. #define MEM256 256
  14. #define DEBUGLEVEL 1
  15. struct mempage{
  16. struct mempage *next;
  17. unsigned usable;
  18. unsigned char bitmap[32];
  19. unsigned char data[MEM64K];
  20. } * pages[] = {NULL, NULL, NULL, NULL, NULL, NULL};
  21. unsigned memsizes[] = {MEM64K, MEM16K, MEM4K, MEM1K, MEM256, 0};
  22. enum pagesizes {
  23. p64k,
  24. p16k,
  25. p4k,
  26. p1k,
  27. p256,
  28. nomem,
  29. };
  30. pthread_mutex_t mem_mutex;
  31. int mem_init = 0;
  32. #ifdef _WIN32
  33. HANDLE myheap;
  34. #define malloc(x) HeapAlloc(myheap, 0, x)
  35. #define free(x) HeapFree(myheap, 0, x)
  36. #endif
  37. void init_mem(void) {
  38. mem_init++;
  39. pthread_mutex_init(&mem_mutex, NULL);
  40. #if DEBUGLEVEL > 2
  41. fprintf(stderr, "Memory initialized\n");
  42. fflush(stderr);
  43. #endif
  44. #ifdef _WIN32
  45. myheap = HeapCreate(0, MEM64K*16, 0);
  46. #endif
  47. }
  48. void * myalloc64k(){
  49. struct mempage *newpage;
  50. if(!mem_init)init_mem();
  51. if(!(newpage = (struct mempage *)malloc(sizeof(struct mempage)))){
  52. #if DEBUGLEVEL > 0
  53. fprintf(stderr, "Failed to allocate p64k\n");
  54. fflush(stderr);
  55. #endif
  56. return NULL;
  57. }
  58. memset(newpage->bitmap, 0, 32);
  59. newpage->usable = 0;
  60. pthread_mutex_lock(&mem_mutex);
  61. newpage->next = pages[p64k];
  62. pages[p64k] = newpage;
  63. pthread_mutex_unlock(&mem_mutex);
  64. #if DEBUGLEVEL > 2
  65. fprintf(stderr, "New p64k created, address %X region: %X\n", newpage, newpage->data);
  66. fflush(stderr);
  67. #endif
  68. #if DEBUGLEVEL == 2
  69. fprintf(stderr, "myalloc64 %p\n", newpage->data);
  70. fflush(stderr);
  71. #endif
  72. return newpage->data;
  73. }
  74. int alloced = 0;
  75. void * myalloc(size_t size){
  76. struct mempage *newpage, *page;
  77. unsigned pagesize;
  78. unsigned i=0, j, k=0;
  79. int p;
  80. alloced++;
  81. if(!mem_init)init_mem();
  82. for(p = nomem; ; ) {
  83. if(!p){
  84. #if DEBUGLEVEL > 2
  85. fprintf(stderr, "Page is too large (%u), requesting malloc instead\n", size);
  86. fflush(stderr);
  87. #endif
  88. return malloc(size);
  89. }
  90. p--;
  91. if(size<memsizes[p]){
  92. break;
  93. }
  94. }
  95. if(p == p64k){
  96. #if DEBUGLEVEL > 2
  97. fprintf(stderr, "Page will p64k\n");
  98. fflush(stderr);
  99. #endif
  100. return myalloc64k();
  101. }
  102. pagesize = memsizes[p];
  103. #if DEBUGLEVEL > 2
  104. fprintf(stderr, "Calculated pagesize: %u\n", pagesize);
  105. fflush(stderr);
  106. #endif
  107. pthread_mutex_lock(&mem_mutex);
  108. newpage = pages[p];
  109. if(newpage && newpage->usable){
  110. #if DEBUGLEVEL > 2
  111. fprintf(stderr, "Useful page found: %X,", newpage);
  112. fflush(stderr);
  113. #endif
  114. for(j=0; j<32; j++){
  115. register unsigned c = newpage->bitmap[j];
  116. if(c){
  117. for(k=0; ;k++)if(c & (1<<k))break;
  118. i = (j<<11) + (k<<8);
  119. #if DEBUGLEVEL > 2
  120. fprintf(stderr, "region: %X, offset %u, byte %u, %u, %u\n", newpage->data + i, i, j, k, newpage->bitmap[j]);
  121. fflush(stderr);
  122. #endif
  123. break;
  124. }
  125. }
  126. }
  127. else{
  128. if(!(newpage = (struct mempage *)malloc(sizeof(struct mempage)))){
  129. pthread_mutex_unlock(&mem_mutex);
  130. #if DEBUGLEVEL > 0
  131. fprintf(stderr, "Failed to allocate p64k\n");
  132. fflush(stderr);
  133. #endif
  134. return NULL;
  135. }
  136. #if DEBUGLEVEL > 2
  137. fprintf(stderr, "New page used: %X,", newpage);
  138. fflush(stderr);
  139. #endif
  140. memset(newpage->bitmap, 0, 32);
  141. for(i = 0; i<MEM64K; i+=pagesize){
  142. j = (i >> 11);
  143. k = ((i & 0x000007FF) >> 8);
  144. newpage->bitmap[j] |= (1<<k);
  145. }
  146. i-=pagesize;
  147. newpage->next = pages[p];
  148. newpage->usable = MEM64K;
  149. pages[p] = newpage;
  150. }
  151. #if DEBUGLEVEL > 2
  152. fprintf(stderr, "Byte was %d/%d/%d\n", j, k, newpage->bitmap[j]);
  153. fflush(stderr);
  154. #endif
  155. newpage->bitmap[j] ^= (1<<k);
  156. #if DEBUGLEVEL > 2
  157. fprintf(stderr, "Byte set %d/%d/%d\n", j, k, newpage->bitmap[j]);
  158. fflush(stderr);
  159. #endif
  160. newpage->usable -= pagesize;
  161. #if DEBUGLEVEL > 2
  162. fprintf(stderr, "usable amount after allocation: %u\n", newpage->usable);
  163. fflush(stderr);
  164. #endif
  165. if(!newpage->usable){
  166. #if DEBUGLEVEL > 2
  167. fprintf(stderr, "No usable amount left\n", newpage->usable);
  168. fflush(stderr);
  169. #endif
  170. if((page = newpage->next) && page->usable){
  171. #if DEBUGLEVEL > 2
  172. fprintf(stderr, "Moving to end of list\n", newpage->usable);
  173. fflush(stderr);
  174. #endif
  175. pages[p] = page;
  176. while(page->next && page->next->usable)page = page->next;
  177. newpage->next = page->next;
  178. page->next = newpage;
  179. }
  180. }
  181. pthread_mutex_unlock(&mem_mutex);
  182. #if DEBUGLEVEL > 2
  183. fprintf(stderr, "All done, returning: %x\n", newpage->data + i);
  184. fflush(stderr);
  185. #endif
  186. #if DEBUGLEVEL == 2
  187. fprintf(stderr, "malloc %p\n", (void *)(newpage->data + i));
  188. fflush(stderr);
  189. #endif
  190. return (void *)(newpage->data + i);
  191. }
  192. int myfindsize(void * p, struct mempage ***prevpagep, struct mempage **pagep){
  193. int i;
  194. struct mempage *prevpage, *page;
  195. for (i=0; i<nomem; i++){
  196. for(page = pages[i], prevpage = NULL; page; page=page->next){
  197. if( p >= (void *)page->data && p < (void *)(page->data + MEM64K))break;
  198. prevpage = page;
  199. }
  200. if(page){
  201. if(pagep)*pagep = page;
  202. if(prevpagep)*prevpagep = prevpage?&prevpage->next:&pages[i];
  203. #if DEBUGLEVEL > 2
  204. fprintf(stderr, "%x belongs to page: %x with data %x\n", p, page, page->data);
  205. fflush(stderr);
  206. #endif
  207. break;
  208. }
  209. }
  210. return i;
  211. }
  212. void myfree(void *p){
  213. struct mempage **prevpage, *page;
  214. int i;
  215. unsigned pagesize;
  216. unsigned size, j, k;
  217. alloced--;
  218. #if DEBUGLEVEL == 2
  219. fprintf(stderr, "free %p\n", p);
  220. fflush(stderr);
  221. #endif
  222. pthread_mutex_lock(&mem_mutex);
  223. i = myfindsize(p, &prevpage, &page);
  224. if (i == nomem) {
  225. #if DEBUGLEVEL > 2
  226. fprintf(stderr, "Page does not exists, trying free()\n");
  227. fflush(stderr);
  228. #endif
  229. pthread_mutex_unlock(&mem_mutex);
  230. free(p);
  231. return;
  232. }
  233. pagesize = memsizes[i];
  234. #if DEBUGLEVEL > 2
  235. fprintf(stderr, "Calculated pagesize: %u\n", pagesize);
  236. fflush(stderr);
  237. #endif
  238. size = (unsigned)((unsigned char*)p - page->data);
  239. if(size%pagesize) {
  240. #if DEBUGLEVEL > 0
  241. write(2, p, 4);
  242. fprintf(stderr, "\nGiven address is not block aligned, ignoring\n");
  243. fflush(stderr);
  244. #endif
  245. pthread_mutex_unlock(&mem_mutex);
  246. return; /* Hmmmmm */
  247. }
  248. *prevpage = page->next;
  249. page->usable += pagesize;
  250. #if DEBUGLEVEL > 2
  251. fprintf(stderr, "New usable space: %u\n", page->usable);
  252. fflush(stderr);
  253. #endif
  254. if(page->usable >= MEM64K && ((pagesize == MEM64K) || (pages[i] && pages[i]->usable))) {
  255. #if DEBUGLEVEL > 2
  256. fprintf(stderr, "Free this page\n");
  257. fflush(stderr);
  258. #endif
  259. free(page);
  260. }
  261. else {
  262. j = (size>>11);
  263. k = ((size & 0x000007FF) >> 8);
  264. k = ('\01'<<k);
  265. if(page->bitmap[j] & k) {
  266. #if DEBUGLEVEL > 0
  267. fprintf(stderr, "Error: double free() %d/%d/%d\n", j, k, page->bitmap[j]);
  268. fflush(stderr);
  269. #endif
  270. page->usable += pagesize;
  271. }
  272. page->bitmap[j] |= k;
  273. page->next = pages[i];
  274. pages[i] = page;
  275. #if DEBUGLEVEL > 2
  276. fprintf(stderr, "This page will be reused next time\n");
  277. fflush(stderr);
  278. #endif
  279. }
  280. pthread_mutex_unlock(&mem_mutex);
  281. }
  282. char * mystrdup(const char *str){
  283. unsigned l;
  284. char *p;
  285. if(!str) return NULL;
  286. l = ((unsigned)strlen(str))+1;
  287. p = myalloc(l);
  288. if(p)memcpy(p, str, l);
  289. #if DEBUGLEVEL == 2
  290. fprintf(stderr, "strdup %p\n", p);
  291. fflush(stderr);
  292. #endif
  293. return p;
  294. }
  295. void *myrealloc(void *ptr, size_t size){
  296. unsigned l;
  297. void * p;
  298. l = myfindsize(ptr, NULL, NULL);
  299. if(size <= memsizes[l]) return ptr;
  300. p = myalloc(size);
  301. if(p){
  302. memmove(p,ptr,size);
  303. myfree(ptr);
  304. }
  305. return p;
  306. }
  307. #ifdef WITH_MAIN
  308. int main(){
  309. void *p1, *p2, *p3, *p4, *p5, *p6, *p7, *p8, *p9, *p10, *p11, *p12, *p13;
  310. p1 = myalloc(5000);
  311. p2 = myalloc(5000);
  312. p3 = myalloc(5000);
  313. p4 = myalloc(5000);
  314. p5 = myalloc(5000);
  315. p6 = myalloc(5000);
  316. p7 = myalloc(5000);
  317. p8 = myalloc(5000);
  318. p9 = myalloc(5000);
  319. p10 = myalloc(5000);
  320. myfree(p2);
  321. myfree(p8);
  322. p11 = myalloc(5000);
  323. p12 = myalloc(5000);
  324. p13 = myalloc(5000);
  325. p2 = myalloc(5000);
  326. p8 = myalloc(5000);
  327. myalloc(5000);
  328. }
  329. #endif
  330. #endif