|
|
@@ -1,5 +1,6 @@
|
|
|
#include "binbcast.cuh"
|
|
|
#include <cstdint>
|
|
|
+#include <utility>
|
|
|
|
|
|
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
|
|
return b;
|
|
|
@@ -22,13 +23,16 @@ static __device__ __forceinline__ float op_div(const float a, const float b) {
|
|
|
return a / b;
|
|
|
}
|
|
|
|
|
|
-template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
|
|
+
|
|
|
+
|
|
|
+template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, typename... src1_ptrs>
|
|
|
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
|
- int ne0, int ne1, int ne2, int ne3,
|
|
|
- int ne10, int ne11, int ne12, int ne13,
|
|
|
- /*int s0, */ int s1, int s2, int s3,
|
|
|
- /*int s00,*/ int s01, int s02, int s03,
|
|
|
- /*int s10,*/ int s11, int s12, int s13) {
|
|
|
+ const int ne0, const int ne1, const int ne2, const int ne3,
|
|
|
+ const int ne10, const int ne11, const int ne12, const int ne13,
|
|
|
+ /*int s0, */ const int s1, const int s2, const int s3,
|
|
|
+ /*int s00,*/ const int s01, const int s02, const int s03,
|
|
|
+ /*int s10,*/ const int s11, const int s12, const int s13,
|
|
|
+ src1_ptrs... src1s) {
|
|
|
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
|
|
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
|
|
@@ -46,24 +50,27 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
|
|
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
|
|
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
|
|
|
|
|
- const src0_t * src0_row = src0 + i_src0;
|
|
|
- const src1_t * src1_row = src1 + i_src1;
|
|
|
+ const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
|
|
|
dst_t * dst_row = dst + i_dst;
|
|
|
|
|
|
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
|
|
const int i10 = i0 % ne10;
|
|
|
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
|
|
+
|
|
|
+ float result = src0_row ? (float) src0_row[i0] : 0.0f;
|
|
|
+ result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
|
|
|
+
|
|
|
+ dst_row[i0] = (dst_t) result;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
|
|
-static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
|
- int ne0, int ne1, int ne2, int ne3,
|
|
|
- int ne10, int ne11, int ne12, int ne13,
|
|
|
- /*int s0, */ int s1, int s2, int s3,
|
|
|
- /*int s00,*/ int s01, int s02, int s03,
|
|
|
- /*int s10,*/ int s11, int s12, int s13) {
|
|
|
-
|
|
|
+template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, typename... src1_ptrs>
|
|
|
+static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
|
+ const int ne0, const int ne1, const int ne2,const int ne3,
|
|
|
+ const int ne10, const int ne11, const int ne12, const int ne13,
|
|
|
+ /*int s0, */ const int s1, const int s2, const int s3,
|
|
|
+ /*int s00,*/ const int s01, const int s02, const int s03,
|
|
|
+ /*int s10,*/ const int s11, const int s12, const int s13,
|
|
|
+ src1_ptrs ... src1s) {
|
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
|
|
const int i3 = i/(ne2*ne1*ne0);
|
|
|
@@ -83,12 +90,166 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
|
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
|
|
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
|
|
|
|
|
- const src0_t * src0_row = src0 + i_src0;
|
|
|
- const src1_t * src1_row = src1 + i_src1;
|
|
|
+ const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
|
|
|
dst_t * dst_row = dst + i_dst;
|
|
|
|
|
|
const int i10 = i0 % ne10;
|
|
|
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
|
|
+
|
|
|
+ float result = src0_row ? (float) src0_row[i0] : 0.0f;
|
|
|
+ result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
|
|
|
+
|
|
|
+ dst_row[i0] = (dst_t) result;
|
|
|
+}
|
|
|
+
|
|
|
+template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, size_t... I>
|
|
|
+static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
|
+ const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
|
|
+ cudaStream_t stream, std::index_sequence<I...>) {
|
|
|
+ GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
+
|
|
|
+ int nr0 = ne10 / ne0;
|
|
|
+ int nr1 = ne11 / ne1;
|
|
|
+ int nr2 = ne12 / ne2;
|
|
|
+ int nr3 = ne13 / ne3;
|
|
|
+
|
|
|
+ int nr[4] = { nr0, nr1, nr2, nr3 };
|
|
|
+
|
|
|
+ int64_t cne[] = { ne0, ne1, ne2, ne3 };
|
|
|
+ int64_t cne0[] = { ne00, ne01, ne02, ne03 };
|
|
|
+ int64_t cne1[] = { ne10, ne11, ne12, ne13 };
|
|
|
+
|
|
|
+ size_t cnb[] = { nb0, nb1, nb2, nb3 };
|
|
|
+ size_t cnb0[] = { nb00, nb01, nb02, nb03 };
|
|
|
+ size_t cnb1[] = { nb10, nb11, nb12, nb13 };
|
|
|
+
|
|
|
+ auto collapse = [](int64_t cne[]) {
|
|
|
+ cne[0] *= cne[1];
|
|
|
+ cne[1] = cne[2];
|
|
|
+ cne[2] = cne[3];
|
|
|
+ cne[3] = 1;
|
|
|
+ };
|
|
|
+
|
|
|
+ auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
|
|
+ cnb[1] *= cne[1];
|
|
|
+ cnb[2] *= cne[2];
|
|
|
+ cnb[3] *= cne[3];
|
|
|
+ };
|
|
|
+
|
|
|
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
|
|
+ for (int i = 0; i < 4; i++) {
|
|
|
+ if (nr[i] != 1) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (i > 0) {
|
|
|
+ collapse_nb(cnb, cne);
|
|
|
+ collapse_nb(cnb0, cne0);
|
|
|
+ collapse_nb(cnb1, cne1);
|
|
|
+ collapse(cne);
|
|
|
+ collapse(cne0);
|
|
|
+ collapse(cne1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ int64_t ne0 = cne[0];
|
|
|
+ int64_t ne1 = cne[1];
|
|
|
+ int64_t ne2 = cne[2];
|
|
|
+ int64_t ne3 = cne[3];
|
|
|
+
|
|
|
+ //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
|
|
+ //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
|
|
+ //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
|
|
+ //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
|
|
+
|
|
|
+ int64_t ne10 = cne1[0];
|
|
|
+ int64_t ne11 = cne1[1];
|
|
|
+ int64_t ne12 = cne1[2];
|
|
|
+ int64_t ne13 = cne1[3];
|
|
|
+
|
|
|
+ size_t nb0 = cnb[0];
|
|
|
+ size_t nb1 = cnb[1];
|
|
|
+ size_t nb2 = cnb[2];
|
|
|
+ size_t nb3 = cnb[3];
|
|
|
+
|
|
|
+ size_t nb00 = cnb0[0];
|
|
|
+ size_t nb01 = cnb0[1];
|
|
|
+ size_t nb02 = cnb0[2];
|
|
|
+ size_t nb03 = cnb0[3];
|
|
|
+
|
|
|
+ size_t nb10 = cnb1[0];
|
|
|
+ size_t nb11 = cnb1[1];
|
|
|
+ size_t nb12 = cnb1[2];
|
|
|
+ size_t nb13 = cnb1[3];
|
|
|
+
|
|
|
+ size_t s0 = nb0 / sizeof(dst_t);
|
|
|
+ size_t s1 = nb1 / sizeof(dst_t);
|
|
|
+ size_t s2 = nb2 / sizeof(dst_t);
|
|
|
+ size_t s3 = nb3 / sizeof(dst_t);
|
|
|
+
|
|
|
+ size_t s10 = nb10 / sizeof(src1_t);
|
|
|
+ size_t s11 = nb11 / sizeof(src1_t);
|
|
|
+ size_t s12 = nb12 / sizeof(src1_t);
|
|
|
+ size_t s13 = nb13 / sizeof(src1_t);
|
|
|
+
|
|
|
+ size_t s00 = nb00 / sizeof(src0_t);
|
|
|
+ size_t s01 = nb01 / sizeof(src0_t);
|
|
|
+ size_t s02 = nb02 / sizeof(src0_t);
|
|
|
+ size_t s03 = nb03 / sizeof(src0_t);
|
|
|
+
|
|
|
+ GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
|
|
+ GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
|
|
+ GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
|
|
+ GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
|
|
+
|
|
|
+ GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
|
|
+ GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
|
|
+ GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
|
|
+ GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
|
|
+
|
|
|
+ GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
|
|
+ GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
|
|
+ GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
|
|
+ GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
|
|
+
|
|
|
+ GGML_ASSERT(s0 == 1);
|
|
|
+ GGML_ASSERT(s00 == 1);
|
|
|
+ GGML_ASSERT(s10 == 1);
|
|
|
+
|
|
|
+ const int block_size = 128;
|
|
|
+
|
|
|
+ int64_t hne0 = std::max(ne0 / 2LL, 1LL);
|
|
|
+
|
|
|
+ dim3 block_dims;
|
|
|
+ block_dims.x = std::min<unsigned int>(hne0, block_size);
|
|
|
+ block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
|
|
+ block_dims.z = std::min(std::min<unsigned int>(ne2 * ne3, block_size / block_dims.x / block_dims.y), 64U);
|
|
|
+
|
|
|
+ dim3 block_nums((hne0 + block_dims.x - 1) / block_dims.x,
|
|
|
+ (ne1 + block_dims.y - 1) / block_dims.y,
|
|
|
+ (ne2 * ne3 + block_dims.z - 1) / block_dims.z);
|
|
|
+
|
|
|
+ if (block_nums.z > 65535) {
|
|
|
+ int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
|
|
|
+ k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
|
|
|
+ <<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd,
|
|
|
+ ne0, ne1, ne2, ne3,
|
|
|
+ ne10, ne11, ne12, ne13,
|
|
|
+ /* s0, */ s1, s2, s3,
|
|
|
+ /* s00,*/ s01, s02, s03,
|
|
|
+ /* s10,*/ s11, s12,s13,
|
|
|
+ (const src1_t *) dst->src[I + 1]->data...);
|
|
|
+ } else {
|
|
|
+ k_bin_bcast<bin_op, src0_t, src1_t, dst_t>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(src0_dd, src1_dd, dst_dd,
|
|
|
+ ne0, ne1, ne2, ne3,
|
|
|
+ ne10, ne11, ne12, ne13,
|
|
|
+ /* s0, */ s1, s2, s3,
|
|
|
+ /* s00,*/ s01, s02, s03,
|
|
|
+ /* s10,*/ s11, s12,s13,
|
|
|
+ (const src1_t *) dst->src[I + 1]->data...);
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
|
@@ -120,160 +281,14 @@ static __global__ void k_repeat_back(
|
|
|
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
|
|
}
|
|
|
|
|
|
-template<float (*bin_op)(const float, const float)>
|
|
|
+template <float (*bin_op)(const float, const float), int n_fuse = 1>
|
|
|
struct bin_bcast_cuda {
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
|
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
|
|
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
|
|
cudaStream_t stream) {
|
|
|
-
|
|
|
- GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
-
|
|
|
- int nr0 = ne10/ne0;
|
|
|
- int nr1 = ne11/ne1;
|
|
|
- int nr2 = ne12/ne2;
|
|
|
- int nr3 = ne13/ne3;
|
|
|
-
|
|
|
- int nr[4] = { nr0, nr1, nr2, nr3 };
|
|
|
-
|
|
|
- // collapse dimensions until first broadcast dimension
|
|
|
- int64_t cne[] = {ne0, ne1, ne2, ne3};
|
|
|
- int64_t cne0[] = {ne00, ne01, ne02, ne03};
|
|
|
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
|
|
-
|
|
|
- size_t cnb[] = {nb0, nb1, nb2, nb3};
|
|
|
- size_t cnb0[] = {nb00, nb01, nb02, nb03};
|
|
|
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
|
|
-
|
|
|
- auto collapse = [](int64_t cne[]) {
|
|
|
- cne[0] *= cne[1];
|
|
|
- cne[1] = cne[2];
|
|
|
- cne[2] = cne[3];
|
|
|
- cne[3] = 1;
|
|
|
- };
|
|
|
-
|
|
|
- auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
|
|
- cnb[1] *= cne[1];
|
|
|
- cnb[2] *= cne[2];
|
|
|
- cnb[3] *= cne[3];
|
|
|
- };
|
|
|
-
|
|
|
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
|
|
- for (int i = 0; i < 4; i++) {
|
|
|
- if (nr[i] != 1) {
|
|
|
- break;
|
|
|
- }
|
|
|
- if (i > 0) {
|
|
|
- collapse_nb(cnb, cne);
|
|
|
- collapse_nb(cnb0, cne0);
|
|
|
- collapse_nb(cnb1, cne1);
|
|
|
- collapse(cne);
|
|
|
- collapse(cne0);
|
|
|
- collapse(cne1);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- int64_t ne0 = cne[0];
|
|
|
- int64_t ne1 = cne[1];
|
|
|
- int64_t ne2 = cne[2];
|
|
|
- int64_t ne3 = cne[3];
|
|
|
-
|
|
|
- //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
|
|
- //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
|
|
- //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
|
|
- //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
|
|
-
|
|
|
- int64_t ne10 = cne1[0];
|
|
|
- int64_t ne11 = cne1[1];
|
|
|
- int64_t ne12 = cne1[2];
|
|
|
- int64_t ne13 = cne1[3];
|
|
|
-
|
|
|
- size_t nb0 = cnb[0];
|
|
|
- size_t nb1 = cnb[1];
|
|
|
- size_t nb2 = cnb[2];
|
|
|
- size_t nb3 = cnb[3];
|
|
|
-
|
|
|
- size_t nb00 = cnb0[0];
|
|
|
- size_t nb01 = cnb0[1];
|
|
|
- size_t nb02 = cnb0[2];
|
|
|
- size_t nb03 = cnb0[3];
|
|
|
-
|
|
|
- size_t nb10 = cnb1[0];
|
|
|
- size_t nb11 = cnb1[1];
|
|
|
- size_t nb12 = cnb1[2];
|
|
|
- size_t nb13 = cnb1[3];
|
|
|
-
|
|
|
- size_t s0 = nb0 / sizeof(dst_t);
|
|
|
- size_t s1 = nb1 / sizeof(dst_t);
|
|
|
- size_t s2 = nb2 / sizeof(dst_t);
|
|
|
- size_t s3 = nb3 / sizeof(dst_t);
|
|
|
-
|
|
|
- size_t s10 = nb10 / sizeof(src1_t);
|
|
|
- size_t s11 = nb11 / sizeof(src1_t);
|
|
|
- size_t s12 = nb12 / sizeof(src1_t);
|
|
|
- size_t s13 = nb13 / sizeof(src1_t);
|
|
|
-
|
|
|
- size_t s00 = nb00 / sizeof(src0_t);
|
|
|
- size_t s01 = nb01 / sizeof(src0_t);
|
|
|
- size_t s02 = nb02 / sizeof(src0_t);
|
|
|
- size_t s03 = nb03 / sizeof(src0_t);
|
|
|
-
|
|
|
- GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
|
|
- GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
|
|
- GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
|
|
- GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
|
|
-
|
|
|
- GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
|
|
- GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
|
|
- GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
|
|
- GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
|
|
-
|
|
|
- GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
|
|
- GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
|
|
- GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
|
|
- GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
|
|
-
|
|
|
- GGML_ASSERT(s0 == 1);
|
|
|
- GGML_ASSERT(s00 == 1);
|
|
|
- GGML_ASSERT(s10 == 1);
|
|
|
-
|
|
|
- const int block_size = 128;
|
|
|
-
|
|
|
- int64_t hne0 = std::max(ne0/2LL, 1LL);
|
|
|
-
|
|
|
- dim3 block_dims;
|
|
|
- block_dims.x = std::min<unsigned int>(hne0, block_size);
|
|
|
- block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
|
|
- block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
|
|
-
|
|
|
- dim3 block_nums(
|
|
|
- (hne0 + block_dims.x - 1) / block_dims.x,
|
|
|
- (ne1 + block_dims.y - 1) / block_dims.y,
|
|
|
- (ne2*ne3 + block_dims.z - 1) / block_dims.z
|
|
|
- );
|
|
|
-
|
|
|
- if (block_nums.z > 65535) {
|
|
|
- // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
|
|
|
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
|
|
- k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
|
|
- src0_dd, src1_dd, dst_dd,
|
|
|
- ne0, ne1, ne2, ne3,
|
|
|
- ne10, ne11, ne12, ne13,
|
|
|
- /* s0, */ s1, s2, s3,
|
|
|
- /* s00, */ s01, s02, s03,
|
|
|
- /* s10, */ s11, s12, s13);
|
|
|
- } else {
|
|
|
- k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
|
|
- src0_dd, src1_dd, dst_dd,
|
|
|
- ne0, ne1, ne2, ne3,
|
|
|
- ne10, ne11, ne12, ne13,
|
|
|
- /* s0, */ s1, s2, s3,
|
|
|
- /* s00, */ s01, s02, s03,
|
|
|
- /* s10, */ s11, s12, s13);
|
|
|
- }
|
|
|
- }
|
|
|
+ launch_bin_bcast_pack<bin_op, src0_t, src1_t, dst_t>(
|
|
|
+ src0, src1, dst, src0_dd, src1_dd, dst_dd, stream, std::make_index_sequence<n_fuse>{});
|
|
|
}
|
|
|
};
|
|
|
|
|
|
@@ -331,6 +346,68 @@ void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
|
|
}
|
|
|
|
|
|
+template <float (*op)(const float, const float), int n_fuse>
|
|
|
+static void ggml_cuda_op_fused_binbcast_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
+ cudaStream_t stream = ctx.stream();
|
|
|
+
|
|
|
+ const ggml_tensor * src0 = dst->src[0];
|
|
|
+ const ggml_tensor * src1 = dst->src[1];
|
|
|
+
|
|
|
+ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
|
+ launch_bin_bcast_pack<op, float, float, float>(src0, src1, dst,
|
|
|
+ (const float *) src0->data, (const float *) src1->data, (float *) dst->data,
|
|
|
+ stream, std::make_index_sequence<n_fuse>{});
|
|
|
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
|
+ launch_bin_bcast_pack<op, half, half, half>(src0, src1, dst,
|
|
|
+ (const half *) src0->data, (const half *) src1->data, (half *) dst->data,
|
|
|
+ stream, std::make_index_sequence<n_fuse>{});
|
|
|
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
|
|
+ launch_bin_bcast_pack<op, half, float, half>(src0, src1, dst,
|
|
|
+ (const half *) src0->data, (const float *) src1->data, (half *) dst->data,
|
|
|
+ stream, std::make_index_sequence<n_fuse>{});
|
|
|
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
|
|
+ launch_bin_bcast_pack<op, half, float, float>(src0, src1, dst,
|
|
|
+ (const half *) src0->data, (const float *) src1->data, (float *) dst->data,
|
|
|
+ stream, std::make_index_sequence<n_fuse>{});
|
|
|
+ } else {
|
|
|
+ fprintf(stderr,
|
|
|
+ "%s: unsupported types for fusion: dst: %s, src0: %s, src1: %s\n",
|
|
|
+ __func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse) {
|
|
|
+ GGML_ASSERT(2 <= n_fuse && n_fuse <= 8);
|
|
|
+
|
|
|
+ switch (n_fuse) {
|
|
|
+ case 2:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 2>(ctx, dst);
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 3>(ctx, dst);
|
|
|
+ break;
|
|
|
+ case 4:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 4>(ctx, dst);
|
|
|
+ break;
|
|
|
+ case 5:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 5>(ctx, dst);
|
|
|
+ break;
|
|
|
+ case 6:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 6>(ctx, dst);
|
|
|
+ break;
|
|
|
+ case 7:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 7>(ctx, dst);
|
|
|
+ break;
|
|
|
+ case 8:
|
|
|
+ ggml_cuda_op_fused_binbcast_impl<op_add, 8>(ctx, dst);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ GGML_ASSERT(false && "Unsupported n_fuse value");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|