|
|
@@ -1,137 +0,0 @@
|
|
|
-#!/usr/bin/env python3
|
|
|
-import argparse
|
|
|
-import os
|
|
|
-import sys
|
|
|
-from pathlib import Path
|
|
|
-from pprint import pprint
|
|
|
-
|
|
|
-import torch
|
|
|
-from sentencepiece import SentencePieceProcessor
|
|
|
-
|
|
|
-if 'NO_LOCAL_GGUF' not in os.environ:
|
|
|
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
|
-import gguf
|
|
|
-
|
|
|
-
|
|
|
-def _flatten_dict(dct, tensors, prefix=None):
|
|
|
- assert isinstance(dct, dict)
|
|
|
- for key in dct.keys():
|
|
|
- new_prefix = prefix + '.' + key if prefix is not None else key
|
|
|
- if isinstance(dct[key], torch.Tensor):
|
|
|
- tensors[new_prefix] = dct[key]
|
|
|
- elif isinstance(dct[key], dict):
|
|
|
- _flatten_dict(dct[key], tensors, new_prefix)
|
|
|
- else:
|
|
|
- raise ValueError(type(dct[key]))
|
|
|
- return None
|
|
|
-
|
|
|
-
|
|
|
-def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
|
|
- tokenizer_path = dir_model / 'adept_vocab.model'
|
|
|
- print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
|
|
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
|
|
- print('gguf: adding tokens')
|
|
|
- tokens: list[bytes] = []
|
|
|
- scores: list[float] = []
|
|
|
- toktypes: list[int] = []
|
|
|
-
|
|
|
- for i in range(tokenizer.vocab_size()):
|
|
|
- text: bytes
|
|
|
- score: float
|
|
|
-
|
|
|
- piece = tokenizer.id_to_piece(i)
|
|
|
- text = piece.encode("utf-8")
|
|
|
- score = tokenizer.get_score(i)
|
|
|
-
|
|
|
- toktype = 1
|
|
|
- if tokenizer.is_unknown(i):
|
|
|
- toktype = 2
|
|
|
- if tokenizer.is_control(i):
|
|
|
- toktype = 3
|
|
|
- if tokenizer.is_unused(i):
|
|
|
- toktype = 5
|
|
|
- if tokenizer.is_byte(i):
|
|
|
- toktype = 6
|
|
|
-
|
|
|
- tokens.append(text)
|
|
|
- scores.append(score)
|
|
|
- toktypes.append(toktype)
|
|
|
- pass
|
|
|
- return tokens, scores, toktypes
|
|
|
-
|
|
|
-
|
|
|
-def main():
|
|
|
- parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
|
|
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
|
|
- parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
|
|
- parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
|
|
- parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
|
|
- args = parser.parse_args()
|
|
|
- sys.path.append(str(args.adept_inference_dir))
|
|
|
- persimmon_model = torch.load(args.ckpt_path)
|
|
|
- hparams = persimmon_model['args']
|
|
|
- pprint(hparams)
|
|
|
- tensors: dict[str, torch.Tensor] = {}
|
|
|
- _flatten_dict(persimmon_model['model'], tensors, None)
|
|
|
-
|
|
|
- arch = gguf.MODEL_ARCH.PERSIMMON
|
|
|
- gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
|
|
-
|
|
|
- block_count = hparams.num_layers
|
|
|
- head_count = hparams.num_attention_heads
|
|
|
- head_count_kv = head_count
|
|
|
- ctx_length = hparams.seq_length
|
|
|
- hidden_size = hparams.hidden_size
|
|
|
-
|
|
|
- gguf_writer.add_name('persimmon-8b-chat')
|
|
|
- gguf_writer.add_context_length(ctx_length)
|
|
|
- gguf_writer.add_embedding_length(hidden_size)
|
|
|
- gguf_writer.add_block_count(block_count)
|
|
|
- gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
|
|
- # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
|
|
|
- gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
|
|
- gguf_writer.add_head_count(head_count)
|
|
|
- gguf_writer.add_head_count_kv(head_count_kv)
|
|
|
- gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
|
|
- gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
|
|
-
|
|
|
- tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
|
|
- gguf_writer.add_tokenizer_model('llama')
|
|
|
- gguf_writer.add_token_list(tokens)
|
|
|
- gguf_writer.add_token_scores(scores)
|
|
|
- gguf_writer.add_token_types(toktypes)
|
|
|
- gguf_writer.add_bos_token_id(71013)
|
|
|
- gguf_writer.add_eos_token_id(71013)
|
|
|
-
|
|
|
- tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
|
|
- print(tensor_map)
|
|
|
- for name in tensors.keys():
|
|
|
- data = tensors[name]
|
|
|
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
|
|
- continue
|
|
|
- old_dtype = data.dtype
|
|
|
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
|
|
- data = data.to(torch.float32).squeeze().numpy()
|
|
|
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
|
- if new_name is None:
|
|
|
- print("Can not map tensor '" + name + "'")
|
|
|
- sys.exit()
|
|
|
- n_dims = len(data.shape)
|
|
|
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
|
- gguf_writer.add_tensor(new_name, data)
|
|
|
- print("gguf: write header")
|
|
|
- gguf_writer.write_header_to_file()
|
|
|
- print("gguf: write metadata")
|
|
|
- gguf_writer.write_kv_data_to_file()
|
|
|
- print("gguf: write tensors")
|
|
|
- gguf_writer.write_tensors_to_file()
|
|
|
-
|
|
|
- gguf_writer.close()
|
|
|
-
|
|
|
- print(f"gguf: model successfully exported to '{args.outfile}'")
|
|
|
- print("")
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- main()
|
|
|
-
|