|
|
@@ -4762,8 +4762,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
|
|
|
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
|
|
int nx = tensor->ne[0];
|
|
|
- int ny = tensor->ne[1];
|
|
|
- if (nx % QK_K == 0 && ny % QK_K == 0) {
|
|
|
+ if (nx % QK_K == 0) {
|
|
|
new_type = GGML_TYPE_Q6_K;
|
|
|
}
|
|
|
} else if (name.find("attn_v.weight") != std::string::npos) {
|
|
|
@@ -4812,8 +4811,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
|
|
|
int nx = tensor->ne[0];
|
|
|
int ny = tensor->ne[1];
|
|
|
- if (nx % QK_K != 0 || ny % QK_K != 0) {
|
|
|
- LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
|
|
+ if (nx % QK_K != 0) {
|
|
|
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
|
|
|
convert_incompatible_tensor = true;
|
|
|
}
|
|
|
}
|