Quellcode durchsuchen

CANN: supports out_prod operator for F32 and F16 (#17406)

Co-authored-by: tianhao <tianhao42@huawei.com>
TianHao324 vor 1 Monat
Ursprung
Commit
064c90d843
3 geänderte Dateien mit 95 neuen und 0 gelöschten Zeilen
  1. 62 0
      ggml/src/ggml-cann/aclnn_ops.cpp
  2. 20 0
      ggml/src/ggml-cann/aclnn_ops.h
  3. 13 0
      ggml/src/ggml-cann/ggml-cann.cpp

+ 62 - 0
ggml/src/ggml-cann/aclnn_ops.cpp

@@ -42,6 +42,7 @@
 #include <aclnnop/aclnn_exp.h>
 #include <aclnnop/aclnn_fill_scalar.h>
 #include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
+#include <aclnnop/aclnn_ger.h>
 #include <aclnnop/aclnn_group_norm.h>
 #include <aclnnop/aclnn_grouped_matmul_v3.h>
 #include <aclnnop/aclnn_gt_scalar.h>
@@ -3236,3 +3237,64 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst
         GGML_ABORT("Function is not implemented.");
     }
 }
+
+static void ggml_cann_out_prod_fp(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
+    ggml_tensor * src0 = dst->src[0];  // weight
+    ggml_tensor * src1 = dst->src[1];  // input
+    GGML_TENSOR_BINARY_OP_LOCALS
+
+    acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
+    GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, acl_dst.get());
+
+    const int64_t dps2 = ne2 / ne02;
+    const int64_t dps3 = ne3 / ne03;
+    for (int64_t i3 = 0; i3 < ne3; i3++) {
+        for (int64_t i2 = 0; i2 < ne2; i2++) {
+            const int64_t i02 = i2 / dps2;
+            const int64_t i03 = i3 / dps3;
+
+            const int64_t  i12 = i2;
+            const int64_t  i13 = i3;
+            acl_tensor_ptr accumulator =
+                ggml_cann_create_tensor((char *) dst->data + i2 * nb2 + i3 * nb3, ggml_cann_type_mapping(dst->type),
+                                        ggml_type_size(dst->type), dst->ne, dst->nb, 2);
+
+            // The outer product needs to be accumulated in this dimension.
+            for (int64_t i1 = 0; i1 < ne11; i1++) {
+                acl_tensor_ptr acl_input = ggml_cann_create_tensor(
+                    (char *) src1->data + i1 * nb11 + i12 * nb12 + i13 * nb13, ggml_cann_type_mapping(src0->type),
+                    ggml_type_size(src0->type), src1->ne, src1->nb, 1);
+
+                acl_tensor_ptr acl_weight = ggml_cann_create_tensor(
+                    (char *) src0->data + i1 * nb01 + i02 * nb02 + i03 * nb03, ggml_cann_type_mapping(src0->type),
+                    ggml_type_size(src0->type), src0->ne, src0->nb, 1);
+
+                ggml_cann_pool_alloc output_allocator(ctx.pool());
+                void *               output_buffer = output_allocator.alloc(ggml_nbytes(dst));
+                acl_tensor_ptr       acl_out = ggml_cann_create_tensor(output_buffer, ggml_cann_type_mapping(dst->type),
+                                                                       ggml_type_size(dst->type), dst->ne, dst->nb, 2);
+
+                GGML_CANN_CALL_ACLNN_OP(ctx, Ger, acl_input.get(), acl_weight.get(), acl_out.get());
+                float       alpha_value = 1.0f;
+                aclScalar * alpha       = aclCreateScalar(&alpha_value, ACL_FLOAT);
+                GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, accumulator.get(), acl_out.get(), alpha);
+            }
+        }
+    }
+}
+
+void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
+    ggml_tensor * src0 = dst->src[0];
+
+    const enum ggml_type type = src0->type;
+
+    switch (type) {
+        case GGML_TYPE_F32:
+        case GGML_TYPE_F16:
+            ggml_cann_out_prod_fp(ctx, dst);
+            break;
+        default:
+            GGML_ABORT("Unsupport type for GGML_OP_OUT_PROD");
+            break;
+    }
+}

+ 20 - 0
ggml/src/ggml-cann/aclnn_ops.h

@@ -1125,3 +1125,23 @@ void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, ac
     } while (0)
 
 #endif  // CANN_ACLNN_OPS
+
+/**
+ * @brief Performs outer product operation on two ggml tensors using the CANN backend.
+ *
+ * @details This function computes the outer product of two input tensors (src0 and src1)
+ * and stores the result in the destination tensor. The outer product operation is defined as:
+ * dst[i,j,k,l] = sum_m (src0[i,m,k,l] * src1[j,m,k,l])
+ *
+ * The function supports multiple data types including F32, F16. For floating-point
+ * types, it uses batch matrix multiplication for efficient computation.
+ *
+ * The implementation handles 4D tensor broadcasting and batch processing automatically.
+ *
+ * @param ctx The CANN backend context for operation execution and memory management.
+ * @param dst The destination ggml_tensor where the outer product result will be stored.
+ *            The input tensors are assumed to be `dst->src[0]` and `dst->src[1]`.
+ *
+ * @see GGML_CANN_CALL_ACLNN_OP for CANN operator invocation
+ */
+void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst);

+ 13 - 0
ggml/src/ggml-cann/ggml-cann.cpp

@@ -1886,6 +1886,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
         case GGML_OP_FLASH_ATTN_EXT:
             ggml_cann_flash_attn_ext(ctx, dst);
             break;
+        case GGML_OP_OUT_PROD:
+            ggml_cann_out_prod(ctx, dst);
+            break;
         default:
             return false;
     }
@@ -2563,6 +2566,16 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
         case GGML_OP_PAD_REFLECT_1D:
         case GGML_OP_COUNT_EQUAL:
             return true;
+        case GGML_OP_OUT_PROD:
+            {
+                switch (op->src[0]->type) {
+                    case GGML_TYPE_F16:
+                    case GGML_TYPE_F32:
+                        return true;
+                    default:
+                        return false;
+                }
+            }
         case GGML_OP_CONV_TRANSPOSE_1D:
             // TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
             return (op->src[0]->ne[0] - 1) <= 255;