|
|
@@ -2261,24 +2261,6 @@ kernel void kernel_flash_attn_ext_f16(
|
|
|
}
|
|
|
|
|
|
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
|
|
-
|
|
|
- const short tx = tiisg%4;
|
|
|
- const short ty = tiisg/4;
|
|
|
-
|
|
|
- // mqk = mqk*scale
|
|
|
- ss[8*cc + ty*TF + 2*tx + 0] *= scale;
|
|
|
- ss[8*cc + ty*TF + 2*tx + 1] *= scale;
|
|
|
-
|
|
|
- if (logit_softcap != 0.0f) {
|
|
|
- ss[8*cc + ty*TF + 2*tx + 0] = logit_softcap*precise::tanh(ss[8*cc + ty*TF + 2*tx + 0]);
|
|
|
- ss[8*cc + ty*TF + 2*tx + 1] = logit_softcap*precise::tanh(ss[8*cc + ty*TF + 2*tx + 1]);
|
|
|
- }
|
|
|
-
|
|
|
- if (mask != q) {
|
|
|
- // mqk = mqk + mask*slope
|
|
|
- ss[8*cc + ty*TF + 2*tx + 0] += slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0];
|
|
|
- ss[8*cc + ty*TF + 2*tx + 1] += slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1];
|
|
|
- }
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@@ -2290,10 +2272,19 @@ kernel void kernel_flash_attn_ext_f16(
|
|
|
float ms[Q];
|
|
|
|
|
|
for (short j = 0; j < Q; ++j) {
|
|
|
- const short p = tiisg;
|
|
|
-
|
|
|
const float m = M[j];
|
|
|
- const float s = ss[j*TF + p];
|
|
|
+
|
|
|
+ // scale and apply the logitcap / mask
|
|
|
+ float s = ss[j*TF + tiisg]*scale;
|
|
|
+
|
|
|
+ if (logit_softcap != 0.0f) {
|
|
|
+ s = logit_softcap*precise::tanh(s);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (mask != q) {
|
|
|
+ // mqk = mqk + mask*slope
|
|
|
+ s += slope*mp[ic + j*nb31/sizeof(half) + tiisg];
|
|
|
+ }
|
|
|
|
|
|
smax = simd_max(max(smax, s));
|
|
|
M[j] = simd_max(max(M[j], s));
|
|
|
@@ -2304,7 +2295,7 @@ kernel void kernel_flash_attn_ext_f16(
|
|
|
S[j] = S[j]*ms[j] + simd_sum(vs);
|
|
|
|
|
|
// the P matrix from the paper (Q rows, C columns)
|
|
|
- ss[j*TF + p] = vs;
|
|
|
+ ss[j*TF + tiisg] = vs;
|
|
|
}
|
|
|
|
|
|
// create a QxQ diagonal matrix for rescaling the output
|