|
|
@@ -1,217 +0,0 @@
|
|
|
-import argparse
|
|
|
-from typing import Dict, List, Optional
|
|
|
-
|
|
|
-import torch
|
|
|
-import numpy as np
|
|
|
-from gguf import *
|
|
|
-from transformers import (
|
|
|
- AutoProcessor,
|
|
|
- Qwen2VLConfig,
|
|
|
- Qwen2VLProcessor,
|
|
|
- Qwen2VLForConditionalGeneration,
|
|
|
- Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
|
|
|
- Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
|
|
|
-)
|
|
|
-
|
|
|
-
|
|
|
-VISION = "clip.vision"
|
|
|
-
|
|
|
-
|
|
|
-def k(raw_key: str, arch: str) -> str:
|
|
|
- return raw_key.format(arch=arch)
|
|
|
-
|
|
|
-
|
|
|
-def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
|
|
|
- if fullatt_block_indexes is None:
|
|
|
- return 0
|
|
|
- n_wa = fullatt_block_indexes[0]
|
|
|
- for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
|
|
|
- if b - a - 1 != n_wa:
|
|
|
- raise ValueError(
|
|
|
- f"window/full attention layer should have fix pattern of "
|
|
|
- f"for each full-attention layer followed by {n_wa} window-attention layers"
|
|
|
- )
|
|
|
- return n_wa + 1
|
|
|
-
|
|
|
-
|
|
|
-class VL2:
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def to_gguf_name(name: str) -> str:
|
|
|
- og = name
|
|
|
- name = name.replace("text_model", "t").replace("vision_model", "v")
|
|
|
- name = name.replace("blocks", "blk").replace("embeddings.", "")
|
|
|
- name = name.replace("attn.", "attn_")
|
|
|
- name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
|
|
|
- # name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
|
|
|
- name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
|
|
- name = name.replace("merger.mlp", 'mm')
|
|
|
- print(f"[to_gguf_name] {og} --> {name}")
|
|
|
- return name
|
|
|
-
|
|
|
- @classmethod
|
|
|
- def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
|
|
|
- vision_model = qwen2vl.visual
|
|
|
- tensor_map = {}
|
|
|
- for name, ten in vision_model.state_dict().items():
|
|
|
- ten = ten.numpy()
|
|
|
- if 'qkv' in name:
|
|
|
- if ten.ndim == 2: # weight
|
|
|
- c3, _ = ten.shape
|
|
|
- else: # bias
|
|
|
- c3 = ten.shape[0]
|
|
|
- assert c3 % 3 == 0
|
|
|
- c = c3 // 3
|
|
|
- wq = ten[:c]
|
|
|
- wk = ten[c: c * 2]
|
|
|
- wv = ten[c * 2:]
|
|
|
- tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
|
|
|
- tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
|
|
|
- tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
|
|
|
- elif 'merger' in name:
|
|
|
- if name.endswith("ln_q.weight"):
|
|
|
- tensor_map['v.post_ln.weight'] = ten
|
|
|
- elif name.endswith("ln_q.bias"):
|
|
|
- tensor_map['v.post_ln.bias'] = ten
|
|
|
- else:
|
|
|
- # "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
|
|
|
- tensor_map[cls.to_gguf_name(name)] = ten
|
|
|
- elif 'patch_embed.proj.weight' in name:
|
|
|
- # NOTE: split Conv3D into Conv2Ds
|
|
|
- c1, c2, kt, kh, kw = ten.shape
|
|
|
- assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
|
|
- tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
|
|
|
- tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
|
|
|
- else:
|
|
|
- tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
|
|
|
-
|
|
|
- for new_name, ten in tensor_map.items():
|
|
|
- if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
|
|
|
- tensor_map[new_name] = ten.astype(np.float32)
|
|
|
- else:
|
|
|
- tensor_map[new_name] = ten.astype(dtype)
|
|
|
- tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
|
|
|
- return tensor_map
|
|
|
-
|
|
|
-
|
|
|
-class VL25(VL2):
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def to_gguf_name(name: str) -> str:
|
|
|
- og = name
|
|
|
- name = name.replace("text_model", "t").replace("vision_model", "v")
|
|
|
- name = name.replace("blocks", "blk").replace("embeddings.", "")
|
|
|
- name = name.replace("attn.", "attn_")
|
|
|
- name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
|
|
|
- name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
|
|
|
- name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
|
|
- name = name.replace("merger.mlp", 'mm')
|
|
|
- print(f"[vl25][to_gguf_name] {og} --> {name}")
|
|
|
- return name
|
|
|
-
|
|
|
-
|
|
|
-def main(args):
|
|
|
- if args.data_type == 'fp32':
|
|
|
- dtype = torch.float32
|
|
|
- np_dtype = np.float32
|
|
|
- ftype = 0
|
|
|
- elif args.data_type == 'fp16':
|
|
|
- dtype = torch.float16
|
|
|
- np_dtype = np.float16
|
|
|
- ftype = 1
|
|
|
- else:
|
|
|
- raise ValueError()
|
|
|
-
|
|
|
- local_model = False
|
|
|
- model_path = ""
|
|
|
- model_name = args.model_name
|
|
|
- print("model_name: ", model_name)
|
|
|
- if args.model_type == "qwen2vl":
|
|
|
- qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
- model_name, torch_dtype=dtype, device_map="cpu"
|
|
|
- )
|
|
|
- cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
|
|
- vcfg = cfg.vision_config
|
|
|
- else:
|
|
|
- qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
- model_name, torch_dtype=dtype, device_map="cpu"
|
|
|
- )
|
|
|
- cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
|
|
- vcfg = cfg.vision_config
|
|
|
-
|
|
|
- if os.path.isdir(model_name):
|
|
|
- local_model = True
|
|
|
- if model_name.endswith(os.sep):
|
|
|
- model_name = model_name[:-1]
|
|
|
- model_path = model_name
|
|
|
- model_name = os.path.basename(model_name)
|
|
|
- fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
|
|
|
-
|
|
|
- fout = GGUFWriter(path=fname_out, arch="clip")
|
|
|
- fout.add_description("image encoder for Qwen2VL")
|
|
|
-
|
|
|
- fout.add_file_type(ftype)
|
|
|
- fout.add_bool("clip.has_text_encoder", False)
|
|
|
- fout.add_bool("clip.has_vision_encoder", True)
|
|
|
- fout.add_bool("clip.has_qwen2vl_merger", True)
|
|
|
-
|
|
|
- print(cfg.vision_config)
|
|
|
- if 'silu' in cfg.vision_config.hidden_act.lower():
|
|
|
- fout.add_bool("clip.use_silu", True)
|
|
|
- fout.add_bool("clip.use_gelu", False)
|
|
|
- elif 'gelu' in cfg.vision_config.hidden_act.lower():
|
|
|
- fout.add_bool("clip.use_silu", False)
|
|
|
- fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
|
|
|
- else:
|
|
|
- raise ValueError()
|
|
|
-
|
|
|
- if args.model_type == "qwen2.5vl":
|
|
|
- fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
|
|
|
- fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
|
|
|
- fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
|
|
|
- fout.add_string("clip.projector_type", "qwen2.5vl_merger")
|
|
|
- else:
|
|
|
- fout.add_string("clip.projector_type", "qwen2vl_merger")
|
|
|
- fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
|
|
|
- fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
|
|
|
-
|
|
|
- if args.model_type == "qwen2.5vl":
|
|
|
- tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
|
|
|
- else:
|
|
|
- tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
|
|
|
- for name, data in tensor_map.items():
|
|
|
- fout.add_tensor(name, data)
|
|
|
-
|
|
|
- fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
|
|
|
- fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
|
|
|
- fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
|
|
|
- fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
|
|
- fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
|
|
|
- fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
|
|
|
- fout.add_name(model_name)
|
|
|
- """
|
|
|
- HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
|
|
|
- it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
|
|
|
- """
|
|
|
-
|
|
|
- if local_model:
|
|
|
- processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
|
|
|
- else:
|
|
|
- processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
|
|
|
- fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
|
|
|
- fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
|
|
|
-
|
|
|
- fout.write_header_to_file()
|
|
|
- fout.write_kv_data_to_file()
|
|
|
- fout.write_tensors_to_file()
|
|
|
- fout.close()
|
|
|
- print("save model as: ", fname_out)
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- parser = argparse.ArgumentParser()
|
|
|
- parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
|
|
|
- parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
|
|
|
- parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
|
|
|
- args = parser.parse_args()
|
|
|
- main(args)
|