|
|
@@ -2,135 +2,22 @@
|
|
|
|
|
|
import argparse
|
|
|
import os
|
|
|
+import sys
|
|
|
import importlib
|
|
|
from pathlib import Path
|
|
|
|
|
|
+# Add parent directory to path for imports
|
|
|
+sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
|
|
|
+
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
|
|
|
import torch
|
|
|
import numpy as np
|
|
|
-
|
|
|
-### If you want to dump RoPE activations, apply this monkey patch to the model
|
|
|
-### class from Transformers that you are running (replace apertus.modeling_apertus
|
|
|
-### with the proper package and class for your model
|
|
|
-### === START ROPE DEBUG ===
|
|
|
-# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
|
|
|
-
|
|
|
-# orig_rope = apply_rotary_pos_emb
|
|
|
-# torch.set_printoptions(threshold=float('inf'))
|
|
|
-# torch.set_printoptions(precision=6, sci_mode=False)
|
|
|
-
|
|
|
-# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
|
-# # log inputs
|
|
|
-# summarize(q, "RoPE.q_in")
|
|
|
-# summarize(k, "RoPE.k_in")
|
|
|
-
|
|
|
-# # call original
|
|
|
-# q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
|
-
|
|
|
-# # log outputs
|
|
|
-# summarize(q_out, "RoPE.q_out")
|
|
|
-# summarize(k_out, "RoPE.k_out")
|
|
|
-
|
|
|
-# return q_out, k_out
|
|
|
-
|
|
|
-# # Patch it
|
|
|
-# import transformers.models.apertus.modeling_apertus as apertus_mod # noqa: E402
|
|
|
-# apertus_mod.apply_rotary_pos_emb = debug_rope
|
|
|
-### == END ROPE DEBUG ===
|
|
|
-
|
|
|
-
|
|
|
-def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
|
|
|
- """
|
|
|
- Print a tensor in llama.cpp debug style.
|
|
|
-
|
|
|
- Supports:
|
|
|
- - 2D tensors (seq, hidden)
|
|
|
- - 3D tensors (batch, seq, hidden)
|
|
|
- - 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
|
|
|
-
|
|
|
- Shows first and last max_vals of each vector per sequence position.
|
|
|
- """
|
|
|
- t = tensor.detach().to(torch.float32).cpu()
|
|
|
-
|
|
|
- # Determine dimensions
|
|
|
- if t.ndim == 3:
|
|
|
- _, s, _ = t.shape
|
|
|
- elif t.ndim == 2:
|
|
|
- _, s = 1, t.shape[0]
|
|
|
- t = t.unsqueeze(0)
|
|
|
- elif t.ndim == 4:
|
|
|
- _, s, _, _ = t.shape
|
|
|
- else:
|
|
|
- print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
|
|
|
- return
|
|
|
-
|
|
|
- ten_shape = t.shape
|
|
|
-
|
|
|
- print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
|
|
|
- print(" [")
|
|
|
- print(" [")
|
|
|
-
|
|
|
- # Determine indices for first and last sequences
|
|
|
- first_indices = list(range(min(s, max_seq)))
|
|
|
- last_indices = list(range(max(0, s - max_seq), s))
|
|
|
-
|
|
|
- # Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
|
|
|
- has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
|
|
|
-
|
|
|
- # Combine indices
|
|
|
- if has_overlap:
|
|
|
- # If there's overlap, just use the combined unique indices
|
|
|
- indices = sorted(list(set(first_indices + last_indices)))
|
|
|
- separator_index = None
|
|
|
- else:
|
|
|
- # If no overlap, we'll add a separator between first and last sequences
|
|
|
- indices = first_indices + last_indices
|
|
|
- separator_index = len(first_indices)
|
|
|
-
|
|
|
- for i, si in enumerate(indices):
|
|
|
- # Add separator if needed
|
|
|
- if separator_index is not None and i == separator_index:
|
|
|
- print(" ...")
|
|
|
-
|
|
|
- # Extract appropriate slice
|
|
|
- vec = t[0, si]
|
|
|
- if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
|
|
|
- flat = vec.flatten().tolist()
|
|
|
- else: # 2D or 3D case
|
|
|
- flat = vec.tolist()
|
|
|
-
|
|
|
- # First and last slices
|
|
|
- first = flat[:max_vals]
|
|
|
- last = flat[-max_vals:] if len(flat) >= max_vals else flat
|
|
|
- first_str = ", ".join(f"{v:12.4f}" for v in first)
|
|
|
- last_str = ", ".join(f"{v:12.4f}" for v in last)
|
|
|
-
|
|
|
- print(f" [{first_str}, ..., {last_str}]")
|
|
|
-
|
|
|
- print(" ],")
|
|
|
- print(" ]")
|
|
|
- print(f" sum = {t.sum().item():.6f}\n")
|
|
|
-
|
|
|
-
|
|
|
-def debug_hook(name):
|
|
|
- def fn(_m, input, output):
|
|
|
- if isinstance(input, torch.Tensor):
|
|
|
- summarize(input, name + "_in")
|
|
|
- elif isinstance(input, (tuple, list)) and len(input) > 0 and isinstance(input[0], torch.Tensor):
|
|
|
- summarize(input[0], name + "_in")
|
|
|
- if isinstance(output, torch.Tensor):
|
|
|
- summarize(output, name + "_out")
|
|
|
- elif isinstance(output, (tuple, list)) and len(output) > 0 and isinstance(output[0], torch.Tensor):
|
|
|
- summarize(output[0], name + "_out")
|
|
|
-
|
|
|
- return fn
|
|
|
-
|
|
|
-
|
|
|
-unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
|
|
+from utils.common import debug_hook
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Process model with specified path")
|
|
|
parser.add_argument("--model-path", "-m", help="Path to the model")
|
|
|
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
|
|
|
+parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
model_path = os.environ.get("MODEL_PATH", args.model_path)
|
|
|
@@ -139,6 +26,12 @@ if model_path is None:
|
|
|
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
|
|
|
)
|
|
|
|
|
|
+### If you want to dump RoPE activations, uncomment the following lines:
|
|
|
+### === START ROPE DEBUG ===
|
|
|
+# from utils.common import setup_rope_debug
|
|
|
+# setup_rope_debug("transformers.models.apertus.modeling_apertus")
|
|
|
+### == END ROPE DEBUG ===
|
|
|
+
|
|
|
|
|
|
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
@@ -156,6 +49,7 @@ print("Number of layers: ", config.num_hidden_layers)
|
|
|
print("BOS token id: ", config.bos_token_id)
|
|
|
print("EOS token id: ", config.eos_token_id)
|
|
|
|
|
|
+unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
|
|
if unreleased_model_name:
|
|
|
model_name_lower = unreleased_model_name.lower()
|
|
|
unreleased_module_path = (
|
|
|
@@ -184,9 +78,10 @@ else:
|
|
|
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
|
|
|
)
|
|
|
|
|
|
-for name, module in model.named_modules():
|
|
|
- if len(list(module.children())) == 0: # only leaf modules
|
|
|
- module.register_forward_hook(debug_hook(name))
|
|
|
+if args.verbose:
|
|
|
+ for name, module in model.named_modules():
|
|
|
+ if len(list(module.children())) == 0: # only leaf modules
|
|
|
+ module.register_forward_hook(debug_hook(name))
|
|
|
|
|
|
model_name = os.path.basename(model_path)
|
|
|
# Printing the Model class to allow for easier debugging. This can be useful
|