|
|
@@ -1,5 +1,81 @@
|
|
|
#include "argsort.cuh"
|
|
|
|
|
|
+#ifdef GGML_CUDA_USE_CUB
|
|
|
+# include <cub/cub.cuh>
|
|
|
+using namespace cub;
|
|
|
+#endif // GGML_CUDA_USE_CUB
|
|
|
+
|
|
|
+static __global__ void init_indices(int * indices, const int ncols, const int nrows) {
|
|
|
+ const int col = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
+ const int row = blockIdx.y;
|
|
|
+
|
|
|
+ if (col < ncols && row < nrows) {
|
|
|
+ indices[row * ncols + col] = col;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void init_offsets(int * offsets, const int ncols, const int nrows) {
|
|
|
+ const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
+ if (idx <= nrows) {
|
|
|
+ offsets[idx] = idx * ncols;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef GGML_CUDA_USE_CUB
|
|
|
+static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|
|
+ const float * x,
|
|
|
+ int * dst,
|
|
|
+ const int ncols,
|
|
|
+ const int nrows,
|
|
|
+ ggml_sort_order order,
|
|
|
+ cudaStream_t stream) {
|
|
|
+ ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
|
|
|
+ ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
|
|
|
+ ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
|
|
|
+
|
|
|
+ int * temp_indices = temp_indices_alloc.get();
|
|
|
+ float * temp_keys = temp_keys_alloc.get();
|
|
|
+ int * d_offsets = offsets_alloc.get();
|
|
|
+
|
|
|
+ static const int block_size = 256;
|
|
|
+ const dim3 grid_size((ncols + block_size - 1) / block_size, nrows);
|
|
|
+ init_indices<<<grid_size, block_size, 0, stream>>>(temp_indices, ncols, nrows);
|
|
|
+
|
|
|
+ const dim3 offset_grid((nrows + block_size - 1) / block_size);
|
|
|
+ init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
|
|
|
+
|
|
|
+ cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
|
|
|
+
|
|
|
+ size_t temp_storage_bytes = 0;
|
|
|
+
|
|
|
+ if (order == GGML_SORT_ORDER_ASC) {
|
|
|
+ DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
|
|
+ temp_indices, dst, // values (indices)
|
|
|
+ ncols * nrows, nrows, // num items, num segments
|
|
|
+ d_offsets, d_offsets + 1, 0, sizeof(float) * 8, // all bits
|
|
|
+ stream);
|
|
|
+ } else {
|
|
|
+ DeviceSegmentedRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
|
|
|
+ dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, 0,
|
|
|
+ sizeof(float) * 8, stream);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
|
|
|
+ void * d_temp_storage = temp_storage_alloc.get();
|
|
|
+
|
|
|
+ if (order == GGML_SORT_ORDER_ASC) {
|
|
|
+ DeviceSegmentedRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
|
|
|
+ ncols * nrows, nrows, d_offsets, d_offsets + 1, 0, sizeof(float) * 8,
|
|
|
+ stream);
|
|
|
+ } else {
|
|
|
+ DeviceSegmentedRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
|
|
|
+ temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
|
|
|
+ 0, sizeof(float) * 8, stream);
|
|
|
+ }
|
|
|
+}
|
|
|
+#endif // GGML_CUDA_USE_CUB
|
|
|
+
|
|
|
+// Bitonic sort implementation
|
|
|
template<typename T>
|
|
|
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
|
|
T tmp = a;
|
|
|
@@ -65,7 +141,12 @@ static int next_power_of_2(int x) {
|
|
|
return n;
|
|
|
}
|
|
|
|
|
|
-static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
|
|
+static void argsort_f32_i32_cuda_bitonic(const float * x,
|
|
|
+ int * dst,
|
|
|
+ const int ncols,
|
|
|
+ const int nrows,
|
|
|
+ ggml_sort_order order,
|
|
|
+ cudaStream_t stream) {
|
|
|
// bitonic sort requires ncols to be power of 2
|
|
|
const int ncols_pad = next_power_of_2(ncols);
|
|
|
|
|
|
@@ -77,9 +158,11 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
|
|
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
|
|
|
|
|
if (order == GGML_SORT_ORDER_ASC) {
|
|
|
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
|
|
+ k_argsort_f32_i32<GGML_SORT_ORDER_ASC>
|
|
|
+ <<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
|
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
|
|
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
|
|
+ k_argsort_f32_i32<GGML_SORT_ORDER_DESC>
|
|
|
+ <<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
|
|
} else {
|
|
|
GGML_ABORT("fatal error");
|
|
|
}
|
|
|
@@ -100,5 +183,18 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
|
|
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
|
|
|
|
|
- argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
|
|
+#ifdef GGML_CUDA_USE_CUB
|
|
|
+ const int ncols_pad = next_power_of_2(ncols);
|
|
|
+ const size_t shared_mem = ncols_pad * sizeof(int);
|
|
|
+ const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
|
|
|
+
|
|
|
+ if (shared_mem > max_shared_mem || ncols > 1024) {
|
|
|
+ ggml_cuda_pool & pool = ctx.pool();
|
|
|
+ argsort_f32_i32_cuda_cub(pool, src0_d, (int *) dst_d, ncols, nrows, order, stream);
|
|
|
+ } else {
|
|
|
+ argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
|
|
|
+ }
|
|
|
+#else
|
|
|
+ argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
|
|
|
+#endif
|
|
|
}
|