|
@@ -214,6 +214,7 @@ enum llm_arch {
|
|
|
LLM_ARCH_GEMMA,
|
|
LLM_ARCH_GEMMA,
|
|
|
LLM_ARCH_STARCODER2,
|
|
LLM_ARCH_STARCODER2,
|
|
|
LLM_ARCH_MAMBA,
|
|
LLM_ARCH_MAMBA,
|
|
|
|
|
+ LLM_ARCH_COMMAND_R,
|
|
|
LLM_ARCH_UNKNOWN,
|
|
LLM_ARCH_UNKNOWN,
|
|
|
};
|
|
};
|
|
|
|
|
|
|
@@ -243,6 +244,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_GEMMA, "gemma" },
|
|
{ LLM_ARCH_GEMMA, "gemma" },
|
|
|
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
|
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
|
|
{ LLM_ARCH_MAMBA, "mamba" },
|
|
{ LLM_ARCH_MAMBA, "mamba" },
|
|
|
|
|
+ { LLM_ARCH_COMMAND_R, "command-r" },
|
|
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
|
|
};
|
|
};
|
|
|
|
|
|
|
@@ -268,6 +270,7 @@ enum llm_kv {
|
|
|
LLM_KV_EXPERT_COUNT,
|
|
LLM_KV_EXPERT_COUNT,
|
|
|
LLM_KV_EXPERT_USED_COUNT,
|
|
LLM_KV_EXPERT_USED_COUNT,
|
|
|
LLM_KV_POOLING_TYPE,
|
|
LLM_KV_POOLING_TYPE,
|
|
|
|
|
+ LLM_KV_LOGIT_SCALE,
|
|
|
|
|
|
|
|
LLM_KV_ATTENTION_HEAD_COUNT,
|
|
LLM_KV_ATTENTION_HEAD_COUNT,
|
|
|
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
|
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
|
@@ -332,6 +335,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
|
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
|
|
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
|
|
|
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
|
|
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
|
|
|
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
|
|
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
|
|
|
|
|
+ { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
|
|
|
|
|
|
|
|
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
|
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
|
|
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
|
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
|
@@ -838,6 +842,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
|
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
|
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
|
|
},
|
|
},
|
|
|
},
|
|
},
|
|
|
|
|
+ {
|
|
|
|
|
+ LLM_ARCH_COMMAND_R,
|
|
|
|
|
+ {
|
|
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
|
|
+ },
|
|
|
|
|
+ },
|
|
|
{
|
|
{
|
|
|
LLM_ARCH_UNKNOWN,
|
|
LLM_ARCH_UNKNOWN,
|
|
|
{
|
|
{
|
|
@@ -1597,6 +1616,7 @@ enum e_model {
|
|
|
MODEL_20B,
|
|
MODEL_20B,
|
|
|
MODEL_30B,
|
|
MODEL_30B,
|
|
|
MODEL_34B,
|
|
MODEL_34B,
|
|
|
|
|
+ MODEL_35B,
|
|
|
MODEL_40B,
|
|
MODEL_40B,
|
|
|
MODEL_65B,
|
|
MODEL_65B,
|
|
|
MODEL_70B,
|
|
MODEL_70B,
|
|
@@ -1643,6 +1663,7 @@ struct llama_hparams {
|
|
|
|
|
|
|
|
float f_clamp_kqv = 0.0f;
|
|
float f_clamp_kqv = 0.0f;
|
|
|
float f_max_alibi_bias = 0.0f;
|
|
float f_max_alibi_bias = 0.0f;
|
|
|
|
|
+ float f_logit_scale = 0.0f;
|
|
|
|
|
|
|
|
bool causal_attn = true;
|
|
bool causal_attn = true;
|
|
|
bool need_kq_pos = false;
|
|
bool need_kq_pos = false;
|
|
@@ -3231,6 +3252,7 @@ static const char * llama_model_type_name(e_model type) {
|
|
|
case MODEL_20B: return "20B";
|
|
case MODEL_20B: return "20B";
|
|
|
case MODEL_30B: return "30B";
|
|
case MODEL_30B: return "30B";
|
|
|
case MODEL_34B: return "34B";
|
|
case MODEL_34B: return "34B";
|
|
|
|
|
+ case MODEL_35B: return "35B";
|
|
|
case MODEL_40B: return "40B";
|
|
case MODEL_40B: return "40B";
|
|
|
case MODEL_65B: return "65B";
|
|
case MODEL_65B: return "65B";
|
|
|
case MODEL_70B: return "70B";
|
|
case MODEL_70B: return "70B";
|
|
@@ -3623,6 +3645,15 @@ static void llm_load_hparams(
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_COMMAND_R:
|
|
|
|
|
+ {
|
|
|
|
|
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
|
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
|
|
|
+ switch (hparams.n_layer) {
|
|
|
|
|
+ case 40: model.type = e_model::MODEL_35B; break;
|
|
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default: (void)0;
|
|
default: (void)0;
|
|
|
}
|
|
}
|
|
|
|
|
|
|
@@ -3944,6 +3975,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|
|
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
|
|
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
|
|
|
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
|
|
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
|
|
|
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
|
|
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
|
|
|
|
|
+ LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
|
|
|
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
|
|
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
|
|
|
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
|
|
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
|
|
|
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
|
|
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
|
|
@@ -4918,6 +4950,37 @@ static bool llm_load_tensors(
|
|
|
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
|
|
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_COMMAND_R:
|
|
|
|
|
+ {
|
|
|
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
|
|
+
|
|
|
|
|
+ // output
|
|
|
|
|
+ {
|
|
|
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
|
|
+ // init output from the input tok embed
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
|
|
+ ml.n_created--; // artificial tensor
|
|
|
|
|
+ ml.size_data += ggml_nbytes(model.output);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
|
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
|
|
|
+
|
|
|
|
|
+ auto & layer = model.layers[i];
|
|
|
|
|
+
|
|
|
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
|
|
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
|
|
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
|
|
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
|
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default:
|
|
default:
|
|
|
throw std::runtime_error("unknown architecture");
|
|
throw std::runtime_error("unknown architecture");
|
|
|
}
|
|
}
|
|
@@ -8315,6 +8378,121 @@ struct llm_build_context {
|
|
|
|
|
|
|
|
return gf;
|
|
return gf;
|
|
|
}
|
|
}
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_cgraph * build_command_r() {
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
|
|
+
|
|
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
|
|
+ const float f_logit_scale = hparams.f_logit_scale;
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * cur;
|
|
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
|
|
+
|
|
|
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
|
|
|
+
|
|
|
|
|
+ // inp_pos - contains the positions
|
|
|
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
|
|
+
|
|
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
|
|
+
|
|
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
|
|
+
|
|
|
|
|
+ // norm
|
|
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
|
|
+ LLM_NORM, cb, il);
|
|
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
|
|
+ struct ggml_tensor * ffn_inp = cur;
|
|
|
|
|
+
|
|
|
|
|
+ // self-attention
|
|
|
|
|
+ {
|
|
|
|
|
+ // compute Q and K and RoPE them
|
|
|
|
|
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+ if (model.layers[il].bq) {
|
|
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+ if (model.layers[il].bk) {
|
|
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+ if (model.layers[il].bv) {
|
|
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ Qcur = ggml_rope_custom(
|
|
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
|
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ Kcur = ggml_rope_custom(
|
|
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
|
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
|
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * attn_out = cur;
|
|
|
|
|
+
|
|
|
|
|
+ // feed-forward network
|
|
|
|
|
+ {
|
|
|
|
|
+ cur = llm_build_ffn(ctx0, ffn_inp,
|
|
|
|
|
+ model.layers[il].ffn_up, NULL,
|
|
|
|
|
+ model.layers[il].ffn_gate, NULL,
|
|
|
|
|
+ model.layers[il].ffn_down, NULL,
|
|
|
|
|
+ NULL,
|
|
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // add together residual + FFN + self-attention
|
|
|
|
|
+ cur = ggml_add(ctx0, cur, inpL);
|
|
|
|
|
+ cur = ggml_add(ctx0, cur, attn_out);
|
|
|
|
|
+ cb(cur, "l_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ // input for next layer
|
|
|
|
|
+ inpL = cur;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ cur = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
|
|
+ model.output_norm, NULL,
|
|
|
|
|
+ LLM_NORM, cb, -1);
|
|
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
|
|
+
|
|
|
|
|
+ // lm_head
|
|
|
|
|
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
|
|
|
|
+
|
|
|
|
|
+ if (f_logit_scale) {
|
|
|
|
|
+ cur = ggml_scale(ctx0, cur, f_logit_scale);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
|
|
+
|
|
|
|
|
+ return gf;
|
|
|
|
|
+
|
|
|
|
|
+ }
|
|
|
};
|
|
};
|
|
|
|
|
|
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
@@ -8497,6 +8675,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
{
|
|
|
result = llm.build_mamba();
|
|
result = llm.build_mamba();
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_COMMAND_R:
|
|
|
|
|
+ {
|
|
|
|
|
+ result = llm.build_command_r();
|
|
|
|
|
+ } break;
|
|
|
default:
|
|
default:
|
|
|
GGML_ASSERT(false);
|
|
GGML_ASSERT(false);
|
|
|
}
|
|
}
|
|
@@ -13147,6 +13329,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
case LLM_ARCH_ORION:
|
|
case LLM_ARCH_ORION:
|
|
|
case LLM_ARCH_INTERNLM2:
|
|
case LLM_ARCH_INTERNLM2:
|
|
|
case LLM_ARCH_MINICPM:
|
|
case LLM_ARCH_MINICPM:
|
|
|
|
|
+ case LLM_ARCH_COMMAND_R:
|
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|
|
|
|
|
// the pairs of head values are offset by n_rot/2
|
|
// the pairs of head values are offset by n_rot/2
|