|
|
@@ -2445,7 +2445,7 @@ class Gemma2Model(Model):
|
|
|
raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head")
|
|
|
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
|
- del bid # unusem
|
|
|
+ del bid # unused
|
|
|
|
|
|
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
|
|
# To prevent errors, skip loading lm_head.weight.
|
|
|
@@ -3225,10 +3225,6 @@ def parse_args() -> argparse.Namespace:
|
|
|
"--vocab-only", action="store_true",
|
|
|
help="extract only the vocab",
|
|
|
)
|
|
|
- parser.add_argument(
|
|
|
- "--awq-path", type=Path, default=None,
|
|
|
- help="Path to scale awq cache file",
|
|
|
- )
|
|
|
parser.add_argument(
|
|
|
"--outfile", type=Path,
|
|
|
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
|
|
@@ -3306,19 +3302,6 @@ def main() -> None:
|
|
|
|
|
|
dir_model = args.model
|
|
|
|
|
|
- if args.awq_path:
|
|
|
- sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
|
|
- from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
|
|
|
- tmp_model_path = args.model / "weighted_model"
|
|
|
- dir_model = tmp_model_path
|
|
|
- if tmp_model_path.is_dir():
|
|
|
- logger.info(f"{tmp_model_path} exists as a weighted model.")
|
|
|
- else:
|
|
|
- tmp_model_path.mkdir(parents=True, exist_ok=True)
|
|
|
- logger.info("Saving new weighted model ...")
|
|
|
- add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
|
|
- logger.info(f"Saved weighted model at {tmp_model_path}.")
|
|
|
-
|
|
|
if not dir_model.is_dir():
|
|
|
logger.error(f'Error: {args.model} is not a directory')
|
|
|
sys.exit(1)
|