|
|
@@ -880,20 +880,21 @@ print(f"Loading model: {dir_model.name}")
|
|
|
|
|
|
hparams = Model.load_hparams(dir_model)
|
|
|
|
|
|
-model_class = Model.from_model_architecture(hparams["architectures"][0])
|
|
|
-model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
|
|
+with torch.inference_mode():
|
|
|
+ model_class = Model.from_model_architecture(hparams["architectures"][0])
|
|
|
+ model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
|
|
|
|
|
-print("Set model parameters")
|
|
|
-model_instance.set_gguf_parameters()
|
|
|
+ print("Set model parameters")
|
|
|
+ model_instance.set_gguf_parameters()
|
|
|
|
|
|
-print("Set model tokenizer")
|
|
|
-model_instance.set_vocab()
|
|
|
+ print("Set model tokenizer")
|
|
|
+ model_instance.set_vocab()
|
|
|
|
|
|
-if args.vocab_only:
|
|
|
- print(f"Exporting model vocab to '{fname_out}'")
|
|
|
- model_instance.write_vocab()
|
|
|
-else:
|
|
|
- print(f"Exporting model to '{fname_out}'")
|
|
|
- model_instance.write()
|
|
|
+ if args.vocab_only:
|
|
|
+ print(f"Exporting model vocab to '{fname_out}'")
|
|
|
+ model_instance.write_vocab()
|
|
|
+ else:
|
|
|
+ print(f"Exporting model to '{fname_out}'")
|
|
|
+ model_instance.write()
|
|
|
|
|
|
-print(f"Model successfully exported to '{fname_out}'")
|
|
|
+ print(f"Model successfully exported to '{fname_out}'")
|