|
@@ -88,6 +88,8 @@
|
|
|
#define CC_OFFSET_AMD 1000000
|
|
#define CC_OFFSET_AMD 1000000
|
|
|
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
|
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
|
|
|
|
|
|
|
|
|
+#define GGML_CUDA_MAX_NODES 8192
|
|
|
|
|
+
|
|
|
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
|
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
|
|
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
|
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
|
|
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
|
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
|
@@ -7727,7 +7729,7 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
|
|
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
-void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
|
|
|
|
+static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
|
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
|
|
|
}
|
|
}
|
|
|
|
|
|
|
@@ -7842,11 +7844,11 @@ static size_t g_temp_tensor_extra_index = 0;
|
|
|
|
|
|
|
|
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|
|
if (g_temp_tensor_extras == nullptr) {
|
|
if (g_temp_tensor_extras == nullptr) {
|
|
|
- g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
|
|
|
|
|
|
+ g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
size_t alloc_index = g_temp_tensor_extra_index;
|
|
size_t alloc_index = g_temp_tensor_extra_index;
|
|
|
- g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
|
|
|
|
|
|
+ g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
|
|
|
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
|
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
|
|
memset(extra, 0, sizeof(*extra));
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
|
|
|
@@ -8173,11 +8175,11 @@ struct ggml_backend_buffer_context_cuda {
|
|
|
|
|
|
|
|
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|
|
if (temp_tensor_extras == nullptr) {
|
|
if (temp_tensor_extras == nullptr) {
|
|
|
- temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
|
|
|
|
|
|
+ temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
size_t alloc_index = temp_tensor_extra_index;
|
|
size_t alloc_index = temp_tensor_extra_index;
|
|
|
- temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
|
|
|
|
|
|
+ temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
|
|
|
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
|
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
|
|
memset(extra, 0, sizeof(*extra));
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
|
|