|
|
@@ -279,24 +279,21 @@ struct ggml_tensor * llm_build_qwen3next::delta_net(
|
|
|
cb(q, "q_postscale", il);
|
|
|
cb(beta, "beta_sigmoid", il);
|
|
|
|
|
|
- // First, permute to chunked format: [S_k, n_tokens, H_k, n_seqs]
|
|
|
+ // Pad first along the token dimension
|
|
|
+ q = ggml_pad(ctx, q, 0, 0, pad_size, 0);
|
|
|
+ k = ggml_pad(ctx, k, 0, 0, pad_size, 0);
|
|
|
+ v = ggml_pad(ctx, v, 0, 0, pad_size, 0);
|
|
|
+
|
|
|
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3));
|
|
|
- cb(q, "q_reshape", il);
|
|
|
k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3));
|
|
|
- cb(k, "k_reshape", il);
|
|
|
v = ggml_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3));
|
|
|
- cb(v, "v_reshape", il);
|
|
|
|
|
|
beta = ggml_cont(ctx, ggml_permute(ctx, beta, 1, 2, 0, 3));
|
|
|
cb(beta, "beta_reshape", il);
|
|
|
|
|
|
g = ggml_cont(ctx, ggml_permute(ctx, g, 2, 0, 3, 1));
|
|
|
cb(g, "g_permute", il);
|
|
|
-
|
|
|
- // Then, pad the second dimension (n_tokens) to chunk_size
|
|
|
- q = ggml_pad(ctx, q, 0, pad_size, 0, 0);
|
|
|
- k = ggml_pad(ctx, k, 0, pad_size, 0, 0);
|
|
|
- v = ggml_pad(ctx, v, 0, pad_size, 0, 0);
|
|
|
+
|
|
|
// ... except for beta and g, where we pad the last dimension
|
|
|
beta = ggml_pad(ctx, beta, pad_size, 0, 0, 0);
|
|
|
g = ggml_pad(ctx, g, pad_size, 0, 0, 0);
|
|
|
@@ -704,23 +701,14 @@ ggml_tensor * llm_build_qwen3next::build_qwen3next_linear_attn_layer(llm_graph_i
|
|
|
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
|
|
int64_t repeat_factor = num_v_heads / num_k_heads;
|
|
|
|
|
|
- // GGML tensor layout: [head_dim, num_heads, n_seq_tokens, n_seqs]
|
|
|
-
|
|
|
- // Step 1: Flatten the sequence and batch dimensions to work with them more easily
|
|
|
- ggml_tensor * q_flat = ggml_reshape_2d(ctx0, q_conv, head_k_dim, num_k_heads * n_seq_tokens * n_seqs);
|
|
|
- ggml_tensor * k_flat = ggml_reshape_2d(ctx0, k_conv, head_k_dim, num_k_heads * n_seq_tokens * n_seqs);
|
|
|
-
|
|
|
- // Step 2: Reshape to prepare for repeat_interleave
|
|
|
- // From [head_dim, num_k_heads * n_seq_tokens * n_seqs]
|
|
|
- // To [head_dim, num_k_heads, 1, n_seq_tokens * n_seqs]
|
|
|
- ggml_tensor * q_reshaped = ggml_reshape_4d(ctx0, q_flat, head_k_dim, num_k_heads, 1, n_seq_tokens * n_seqs);
|
|
|
- ggml_tensor * k_reshaped = ggml_reshape_4d(ctx0, k_flat, head_k_dim, num_k_heads, 1, n_seq_tokens * n_seqs);
|
|
|
+ ggml_tensor * q_reshaped = ggml_reshape_4d(ctx0, q_conv, head_k_dim, num_k_heads, 1, n_seq_tokens * n_seqs);
|
|
|
+ ggml_tensor * k_reshaped = ggml_reshape_4d(ctx0, k_conv, head_k_dim, num_k_heads, 1, n_seq_tokens * n_seqs);
|
|
|
|
|
|
- // Step 3: Repeat along the third dimension (the new dimension with size 1)
|
|
|
+ // Repeat along the third dimension (the new dimension with size 1)
|
|
|
ggml_tensor * q_repeated = ggml_repeat_4d(ctx0, q_reshaped, head_k_dim, num_k_heads, repeat_factor, n_seq_tokens * n_seqs);
|
|
|
ggml_tensor * k_repeated = ggml_repeat_4d(ctx0, k_reshaped, head_k_dim, num_k_heads, repeat_factor, n_seq_tokens * n_seqs);
|
|
|
|
|
|
- // Step 4: Reshape back to merge the head and repeat dimensions
|
|
|
+ // Reshape back to merge the head and repeat dimensions
|
|
|
// From [head_dim, num_k_heads, repeat_factor, n_seq_tokens * n_seqs]
|
|
|
// Back to [head_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs]
|
|
|
q_conv = ggml_reshape_4d(ctx0, q_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
|