|
|
@@ -8245,8 +8245,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|
|
ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
|
|
|
ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
|
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
|
-#else
|
|
|
- float * const wdata = params->wdata;
|
|
|
#endif
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
@@ -8263,8 +8261,11 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|
|
wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
+ assert(id*sizeof(ggml_fp16_t) <= params->wsize);
|
|
|
}
|
|
|
#else
|
|
|
+ float * const wdata = params->wdata;
|
|
|
{
|
|
|
size_t id = 0;
|
|
|
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
|
|
@@ -8272,6 +8273,8 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|
|
wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
+ assert(id*sizeof(float) <= params->wsize);
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
@@ -8537,7 +8540,10 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|
|
dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
|
|
|
id += ne00;
|
|
|
}
|
|
|
+
|
|
|
+ assert(id*sizeof(float) <= params->wsize);
|
|
|
}
|
|
|
+
|
|
|
const float * x = wdata;
|
|
|
#endif
|
|
|
|
|
|
@@ -11571,10 +11577,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|
|
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
|
|
node->n_tasks = 1; // TODO: this actually is doing nothing
|
|
|
// the threads are still spinning
|
|
|
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*MAX(ggml_nelements(node->src1), ggml_nelements(node->src0));
|
|
|
- //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
|
|
|
- //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
|
|
|
- //printf("cur = %zu\n", cur);
|
|
|
+#if defined(GGML_USE_CUBLAS)
|
|
|
+ // with cuBLAS, we need memory for the full 3D / 4D data of src1
|
|
|
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
|
|
|
+#else
|
|
|
+ // here we need memory just for single 2D matrix from src0
|
|
|
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
|
|
+#endif
|
|
|
} else {
|
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
|
|
|
}
|