|
|
@@ -35,16 +35,50 @@ public:
|
|
|
std::vector<uint32_t> ids;
|
|
|
};
|
|
|
|
|
|
+ struct stream_copy_info {
|
|
|
+ bool empty() const {
|
|
|
+ assert(ssrc.size() == sdst.size());
|
|
|
+ return ssrc.empty();
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<uint32_t> ssrc;
|
|
|
+ std::vector<uint32_t> sdst;
|
|
|
+ };
|
|
|
+
|
|
|
// for each ubatch, create a slot_info that contains information about where the ubatch should be inserted in the
|
|
|
// KV cells. for example, cell indices for each token, such that: token[i] -> goes to cells[idxs[i]]
|
|
|
struct slot_info {
|
|
|
// data for ggml_set_rows
|
|
|
using idx_vec_t = std::vector<uint32_t>;
|
|
|
|
|
|
- idx_vec_t idxs;
|
|
|
+ // number of streams: ns = s1 - s0 + 1
|
|
|
+ llama_seq_id s0;
|
|
|
+ llama_seq_id s1;
|
|
|
+
|
|
|
+ std::vector<llama_seq_id> strm; // [ns]
|
|
|
+ std::vector<idx_vec_t> idxs; // [ns]
|
|
|
|
|
|
uint32_t head() const {
|
|
|
- return idxs.at(0);
|
|
|
+ GGML_ASSERT(idxs.size() == 1);
|
|
|
+ GGML_ASSERT(!idxs[0].empty());
|
|
|
+
|
|
|
+ return idxs[0][0];
|
|
|
+ }
|
|
|
+
|
|
|
+ void resize(size_t n) {
|
|
|
+ strm.resize(n);
|
|
|
+ idxs.resize(n);
|
|
|
+ }
|
|
|
+
|
|
|
+ size_t size() const {
|
|
|
+ GGML_ASSERT(idxs.size() == strm.size());
|
|
|
+ GGML_ASSERT(!idxs.empty());
|
|
|
+
|
|
|
+ return idxs[0].size();
|
|
|
+ }
|
|
|
+
|
|
|
+ size_t n_stream() const {
|
|
|
+ return strm.size();
|
|
|
}
|
|
|
|
|
|
bool empty() const {
|
|
|
@@ -54,9 +88,6 @@ public:
|
|
|
void clear() {
|
|
|
idxs.clear();
|
|
|
}
|
|
|
-
|
|
|
- // TODO: implement
|
|
|
- //std::vector<idx_vec_t> seq_idxs;
|
|
|
};
|
|
|
|
|
|
using slot_info_vec_t = std::vector<slot_info>;
|
|
|
@@ -68,6 +99,7 @@ public:
|
|
|
ggml_type type_v,
|
|
|
bool v_trans,
|
|
|
bool offload,
|
|
|
+ bool unified,
|
|
|
uint32_t kv_size,
|
|
|
uint32_t n_seq_max,
|
|
|
uint32_t n_pad,
|
|
|
@@ -111,7 +143,8 @@ public:
|
|
|
// llama_kv_cache_unified specific API
|
|
|
//
|
|
|
|
|
|
- uint32_t get_size() const;
|
|
|
+ uint32_t get_size() const;
|
|
|
+ uint32_t get_n_stream() const;
|
|
|
|
|
|
bool get_has_shift() const;
|
|
|
|
|
|
@@ -122,8 +155,8 @@ public:
|
|
|
uint32_t get_n_kv() const;
|
|
|
|
|
|
// get views of the current state of the cache
|
|
|
- ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
|
|
|
- ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
|
|
|
+ ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const;
|
|
|
+ ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const;
|
|
|
|
|
|
// store k_cur and v_cur in the cache based on the provided head location
|
|
|
ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const;
|
|
|
@@ -137,7 +170,7 @@ public:
|
|
|
// return empty vector on failure
|
|
|
slot_info_vec_t prepare(const std::vector<llama_ubatch> & ubatches);
|
|
|
|
|
|
- bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo);
|
|
|
+ bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info);
|
|
|
|
|
|
// find a slot of kv cells that can hold the ubatch
|
|
|
// if cont == true, then the slot must be continuous
|
|
|
@@ -157,8 +190,9 @@ public:
|
|
|
void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const;
|
|
|
void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const;
|
|
|
|
|
|
+ void set_input_k_shift(ggml_tensor * dst) const;
|
|
|
+
|
|
|
void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
|
|
|
- void set_input_k_shift (ggml_tensor * dst) const;
|
|
|
void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
|
|
|
|
|
|
private:
|
|
|
@@ -172,15 +206,15 @@ private:
|
|
|
|
|
|
ggml_tensor * k;
|
|
|
ggml_tensor * v;
|
|
|
+
|
|
|
+ std::vector<ggml_tensor *> k_stream;
|
|
|
+ std::vector<ggml_tensor *> v_stream;
|
|
|
};
|
|
|
|
|
|
bool v_trans = true; // the value tensor is transposed
|
|
|
|
|
|
- // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
|
|
|
- // note: this is not part of the KV state and it's only used to speed-up the find_slot() method
|
|
|
- uint32_t head = 0;
|
|
|
-
|
|
|
const uint32_t n_seq_max = 1;
|
|
|
+ const uint32_t n_stream = 1;
|
|
|
|
|
|
// required padding
|
|
|
const uint32_t n_pad = 1;
|
|
|
@@ -200,7 +234,17 @@ private:
|
|
|
std::vector<ggml_context_ptr> ctxs;
|
|
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
|
|
|
|
|
- llama_kv_cells_unified cells;
|
|
|
+ // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
|
|
|
+ // note: this is not part of the KV state and it's only used to speed-up the find_slot() method
|
|
|
+ std::vector<uint32_t> v_heads;
|
|
|
+
|
|
|
+ std::vector<llama_kv_cells_unified> v_cells;
|
|
|
+
|
|
|
+ // maps from a sequence id to a stream id
|
|
|
+ std::vector<uint32_t> seq_to_stream;
|
|
|
+
|
|
|
+ // pending stream copies that will be applied during the next update
|
|
|
+ stream_copy_info sc_info;
|
|
|
|
|
|
std::vector<kv_layer> layers;
|
|
|
|
|
|
@@ -237,18 +281,25 @@ private:
|
|
|
ggml_cgraph * gf,
|
|
|
const defrag_info & dinfo) const;
|
|
|
|
|
|
- void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
|
|
- void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
|
|
+ struct cell_ranges_t {
|
|
|
+ uint32_t strm;
|
|
|
|
|
|
- bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
|
|
- bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
|
|
+ std::vector<std::pair<uint32_t, uint32_t>> data; // ranges, from inclusive, to exclusive
|
|
|
+ };
|
|
|
+
|
|
|
+ void state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id = -1) const;
|
|
|
+ void state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const;
|
|
|
+
|
|
|
+ bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
|
|
+ bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count);
|
|
|
};
|
|
|
|
|
|
class llama_kv_cache_unified_context : public llama_memory_context_i {
|
|
|
public:
|
|
|
// some shorthands
|
|
|
- using slot_info_vec_t = llama_kv_cache_unified::slot_info_vec_t;
|
|
|
- using defrag_info = llama_kv_cache_unified::defrag_info;
|
|
|
+ using slot_info_vec_t = llama_kv_cache_unified::slot_info_vec_t;
|
|
|
+ using defrag_info = llama_kv_cache_unified::defrag_info;
|
|
|
+ using stream_copy_info = llama_kv_cache_unified::stream_copy_info;
|
|
|
|
|
|
// used for errors
|
|
|
llama_kv_cache_unified_context(llama_memory_status status);
|
|
|
@@ -262,7 +313,8 @@ public:
|
|
|
llama_kv_cache_unified * kv,
|
|
|
llama_context * lctx,
|
|
|
bool do_shift,
|
|
|
- defrag_info dinfo);
|
|
|
+ defrag_info dinfo,
|
|
|
+ stream_copy_info sc_info);
|
|
|
|
|
|
// used to create a batch procesing context from a batch
|
|
|
llama_kv_cache_unified_context(
|
|
|
@@ -320,6 +372,8 @@ private:
|
|
|
|
|
|
defrag_info dinfo;
|
|
|
|
|
|
+ stream_copy_info sc_info;
|
|
|
+
|
|
|
//
|
|
|
// batch processing context
|
|
|
//
|