Răsfoiți Sursa

add google magika inference example (ggml/748)

* add magika inference example

* ggml : fix unaligned accesses in custom ops

* ggml : fix FP32 GELU for values that exceed the FP16 range

* use ggml_pool_1d

* add README

* Update README.md

* pad inputs if the files are too small

* cleanup

ggml-ci
slaren 1 an în urmă
părinte
comite
2774b0c974
1 a modificat fișierele cu 34 adăugiri și 20 ștergeri
  1. 34 20
      ggml.c

+ 34 - 20
ggml.c

@@ -1608,9 +1608,15 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
 inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
 inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
     uint16_t t;
     uint16_t t;
     for (int i = 0; i < n; ++i) {
     for (int i = 0; i < n; ++i) {
-        ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
-        memcpy(&t, &fp16, sizeof(uint16_t));
-        y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
+        if (x[i] <= -10.0f) {
+            y[i] = 0.0f;
+        } else if (x[i] >= 10.0f) {
+            y[i] = x[i];
+        } else {
+            ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
+            memcpy(&t, &fp16, sizeof(uint16_t));
+            y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
+        }
     }
     }
 }
 }
 #else
 #else
@@ -5780,11 +5786,13 @@ struct ggml_tensor * ggml_pool_1d(
         is_node = true;
         is_node = true;
     }
     }
 
 
-    const int64_t ne[2] = {
+    const int64_t ne[4] = {
         ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
         ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
         a->ne[1],
         a->ne[1],
+        a->ne[2],
+        a->ne[3],
     };
     };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 
 
     int32_t params[] = { op, k0, s0, p0 };
     int32_t params[] = { op, k0, s0, p0 };
     ggml_set_op_params(result, params, sizeof(params));
     ggml_set_op_params(result, params, sizeof(params));
@@ -15081,9 +15089,10 @@ static void ggml_compute_forward_map_custom1(
         return;
         return;
     }
     }
 
 
-    struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
+    struct ggml_map_custom1_op_params p;
+    memcpy(&p, dst->op_params, sizeof(p));
 
 
-    p->fun(dst, a, params->ith, params->nth, p->userdata);
+    p.fun(dst, a, params->ith, params->nth, p.userdata);
 }
 }
 
 
 // ggml_compute_forward_map_custom2
 // ggml_compute_forward_map_custom2
@@ -15099,9 +15108,10 @@ static void ggml_compute_forward_map_custom2(
         return;
         return;
     }
     }
 
 
-    struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
+    struct ggml_map_custom2_op_params p;
+    memcpy(&p, dst->op_params, sizeof(p));
 
 
-    p->fun(dst, a, b, params->ith, params->nth, p->userdata);
+    p.fun(dst, a, b, params->ith, params->nth, p.userdata);
 }
 }
 
 
 // ggml_compute_forward_map_custom3
 // ggml_compute_forward_map_custom3
@@ -15118,9 +15128,10 @@ static void ggml_compute_forward_map_custom3(
         return;
         return;
     }
     }
 
 
-    struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
+    struct ggml_map_custom3_op_params p;
+    memcpy(&p, dst->op_params, sizeof(p));
 
 
-    p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
+    p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
 }
 }
 
 
 // ggml_compute_forward_cross_entropy_loss
 // ggml_compute_forward_cross_entropy_loss
@@ -17386,29 +17397,32 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
             } break;
             } break;
         case GGML_OP_MAP_CUSTOM1:
         case GGML_OP_MAP_CUSTOM1:
             {
             {
-                struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
-                if (p->n_tasks == GGML_N_TASKS_MAX) {
+                struct ggml_map_custom1_op_params p;
+                memcpy(&p, node->op_params, sizeof(p));
+                if (p.n_tasks == GGML_N_TASKS_MAX) {
                     n_tasks = n_threads;
                     n_tasks = n_threads;
                 } else {
                 } else {
-                    n_tasks = MIN(p->n_tasks, n_threads);
+                    n_tasks = MIN(p.n_tasks, n_threads);
                 }
                 }
             } break;
             } break;
         case GGML_OP_MAP_CUSTOM2:
         case GGML_OP_MAP_CUSTOM2:
             {
             {
-                struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
-                if (p->n_tasks == GGML_N_TASKS_MAX) {
+                struct ggml_map_custom2_op_params p;
+                memcpy(&p, node->op_params, sizeof(p));
+                if (p.n_tasks == GGML_N_TASKS_MAX) {
                     n_tasks = n_threads;
                     n_tasks = n_threads;
                 } else {
                 } else {
-                    n_tasks = MIN(p->n_tasks, n_threads);
+                    n_tasks = MIN(p.n_tasks, n_threads);
                 }
                 }
             } break;
             } break;
         case GGML_OP_MAP_CUSTOM3:
         case GGML_OP_MAP_CUSTOM3:
             {
             {
-                struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
-                if (p->n_tasks == GGML_N_TASKS_MAX) {
+                struct ggml_map_custom3_op_params p;
+                memcpy(&p, node->op_params, sizeof(p));
+                if (p.n_tasks == GGML_N_TASKS_MAX) {
                     n_tasks = n_threads;
                     n_tasks = n_threads;
                 } else {
                 } else {
-                    n_tasks = MIN(p->n_tasks, n_threads);
+                    n_tasks = MIN(p.n_tasks, n_threads);
                 }
                 }
             } break;
             } break;
         case GGML_OP_CROSS_ENTROPY_LOSS:
         case GGML_OP_CROSS_ENTROPY_LOSS: