|
|
@@ -120,6 +120,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_16B_A1B: return "16B.A1B";
|
|
|
case LLM_TYPE_21B_A3B: return "21B.A3B";
|
|
|
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
|
|
+ case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
|
|
case LLM_TYPE_80B_A3B: return "80B.A3B";
|
|
|
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
|
|
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
|
|
@@ -1797,6 +1798,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
}
|
|
|
} break;
|
|
|
case LLM_ARCH_NEMOTRON_H:
|
|
|
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
|
|
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
|
|
@@ -1812,7 +1814,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
|
|
+
|
|
|
switch (hparams.n_layer) {
|
|
|
+ case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
|
|
|
case 56: type = LLM_TYPE_9B; break;
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
@@ -5159,6 +5168,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
}
|
|
|
} break;
|
|
|
case LLM_ARCH_NEMOTRON_H:
|
|
|
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
|
|
{
|
|
|
// mamba2 Mixer SSM params
|
|
|
// NOTE: int64_t for tensor dimensions
|
|
|
@@ -5169,6 +5179,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
const int64_t n_group = hparams.ssm_n_group;
|
|
|
const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
|
|
|
|
|
|
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
|
+ const int64_t n_ff_shexp = hparams.n_ff_shexp;
|
|
|
+
|
|
|
// embeddings
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
|
|
|
@@ -5218,12 +5231,26 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
|
|
|
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
|
|
|
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
- } else {
|
|
|
- // mlp layers
|
|
|
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
|
|
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
|
|
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
|
|
+ } else {
|
|
|
+ if (n_expert != 0) {
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert }, 0);
|
|
|
+
|
|
|
+ // MoE branch
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
+
|
|
|
+ // Shared expert branch
|
|
|
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
|
|
|
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
|
|
|
+
|
|
|
+ } else {
|
|
|
+ // mlp layers
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
|
|
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
} break;
|
|
|
@@ -6850,7 +6877,8 @@ void llama_model::print_info() const {
|
|
|
arch == LLM_ARCH_PLAMO2 ||
|
|
|
arch == LLM_ARCH_GRANITE_HYBRID ||
|
|
|
arch == LLM_ARCH_QWEN3NEXT ||
|
|
|
- arch == LLM_ARCH_NEMOTRON_H) {
|
|
|
+ arch == LLM_ARCH_NEMOTRON_H ||
|
|
|
+ arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
|
|
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
|
|
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
|
|
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
|
|
@@ -6905,7 +6933,8 @@ void llama_model::print_info() const {
|
|
|
if (arch == LLM_ARCH_MINICPM ||
|
|
|
arch == LLM_ARCH_GRANITE ||
|
|
|
arch == LLM_ARCH_GRANITE_MOE ||
|
|
|
- arch == LLM_ARCH_GRANITE_HYBRID) {
|
|
|
+ arch == LLM_ARCH_GRANITE_HYBRID ||
|
|
|
+ arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
|
|
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
|
|
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
|
|
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
|
|
@@ -7086,7 +7115,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|
|
if (arch == LLM_ARCH_FALCON_H1) {
|
|
|
filter_attn = [&](int32_t) { return true; };
|
|
|
filter_recr = [&](int32_t) { return true; };
|
|
|
- } else if (arch == LLM_ARCH_NEMOTRON_H) {
|
|
|
+ } else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
|
|
filter_attn = [&](int32_t il) {
|
|
|
return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
|
|
|
};
|
|
|
@@ -7457,6 +7486,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
llm = std::make_unique<llm_build_nemotron>(*this, params);
|
|
|
} break;
|
|
|
case LLM_ARCH_NEMOTRON_H:
|
|
|
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_nemotron_h>(*this, params);
|
|
|
} break;
|
|
|
@@ -7741,6 +7771,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_ARWKV7:
|
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
|
case LLM_ARCH_NEMOTRON_H:
|
|
|
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
|
|
return LLAMA_ROPE_TYPE_NONE;
|
|
|
|
|
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|