|
|
@@ -0,0 +1,66 @@
|
|
|
+import os
|
|
|
+import sys
|
|
|
+from tqdm import tqdm
|
|
|
+import requests
|
|
|
+
|
|
|
+if len(sys.argv) < 3:
|
|
|
+ print("Usage: download-pth.py dir-model model-type\n")
|
|
|
+ print(" model-type: Available models 7B, 13B, 30B or 65B")
|
|
|
+ sys.exit(1)
|
|
|
+
|
|
|
+modelsDir = sys.argv[1]
|
|
|
+model = sys.argv[2]
|
|
|
+
|
|
|
+num = {
|
|
|
+ "7B": 1,
|
|
|
+ "13B": 2,
|
|
|
+ "30B": 4,
|
|
|
+ "65B": 8,
|
|
|
+}
|
|
|
+
|
|
|
+if model not in num:
|
|
|
+ print(f"Error: model {model} is not valid, provide 7B, 13B, 30B or 65B")
|
|
|
+ sys.exit(1)
|
|
|
+
|
|
|
+print(f"Downloading model {model}")
|
|
|
+
|
|
|
+files = ["checklist.chk", "params.json"]
|
|
|
+
|
|
|
+for i in range(num[model]):
|
|
|
+ files.append(f"consolidated.0{i}.pth")
|
|
|
+
|
|
|
+resolved_path = os.path.abspath(os.path.join(modelsDir, model))
|
|
|
+os.makedirs(resolved_path, exist_ok=True)
|
|
|
+
|
|
|
+for file in files:
|
|
|
+ dest_path = os.path.join(resolved_path, file)
|
|
|
+
|
|
|
+ if os.path.exists(dest_path):
|
|
|
+ print(f"Skip file download, it already exists: {file}")
|
|
|
+ continue
|
|
|
+
|
|
|
+ url = f"https://agi.gpt4.org/llama/LLaMA/{model}/{file}"
|
|
|
+ response = requests.get(url, stream=True)
|
|
|
+ with open(dest_path, 'wb') as f:
|
|
|
+ with tqdm(unit='B', unit_scale=True, miniters=1, desc=file) as t:
|
|
|
+ for chunk in response.iter_content(chunk_size=1024):
|
|
|
+ if chunk:
|
|
|
+ f.write(chunk)
|
|
|
+ t.update(len(chunk))
|
|
|
+
|
|
|
+files2 = ["tokenizer_checklist.chk", "tokenizer.model"]
|
|
|
+for file in files2:
|
|
|
+ dest_path = os.path.join(modelsDir, file)
|
|
|
+
|
|
|
+ if os.path.exists(dest_path):
|
|
|
+ print(f"Skip file download, it already exists: {file}")
|
|
|
+ continue
|
|
|
+
|
|
|
+ url = f"https://agi.gpt4.org/llama/LLaMA/{file}"
|
|
|
+ response = requests.get(url, stream=True)
|
|
|
+ with open(dest_path, 'wb') as f:
|
|
|
+ with tqdm(unit='B', unit_scale=True, miniters=1, desc=file) as t:
|
|
|
+ for chunk in response.iter_content(chunk_size=1024):
|
|
|
+ if chunk:
|
|
|
+ f.write(chunk)
|
|
|
+ t.update(len(chunk))
|