|
|
@@ -88,6 +88,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
|
|
|
case LLM_TYPE_57B_A14B: return "57B.A14B";
|
|
|
case LLM_TYPE_27B: return "27B";
|
|
|
+ case LLM_TYPE_290B: return "290B";
|
|
|
default: return "?B";
|
|
|
}
|
|
|
}
|
|
|
@@ -1328,6 +1329,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
|
|
|
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_BAILINGMOE:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 28: type = LLM_TYPE_16B; break;
|
|
|
+ case 88: type = LLM_TYPE_290B; break;
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
default: throw std::runtime_error("unsupported model architecture");
|
|
|
}
|
|
|
|
|
|
@@ -3739,6 +3755,46 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
|
|
|
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_BAILINGMOE:
|
|
|
+ {
|
|
|
+ const int64_t n_ff_exp = hparams.n_ff_exp;
|
|
|
+ const int64_t n_expert_shared = hparams.n_expert_shared;
|
|
|
+
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ auto & layer = layers[i];
|
|
|
+
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
|
|
+
|
|
|
+ if (n_expert == 0) {
|
|
|
+ throw std::runtime_error("n_expert must be > 0");
|
|
|
+ }
|
|
|
+ if (n_expert_used == 0) {
|
|
|
+ throw std::runtime_error("n_expert_used must be > 0");
|
|
|
+ }
|
|
|
+
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
+
|
|
|
+ layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
|
|
|
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
|
|
|
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
default:
|
|
|
throw std::runtime_error("unknown architecture");
|
|
|
}
|
|
|
@@ -4026,6 +4082,14 @@ void llama_model::print_info() const {
|
|
|
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
|
|
}
|
|
|
|
|
|
+ if (arch == LLM_ARCH_BAILINGMOE) {
|
|
|
+ LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
|
|
|
+ LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
|
|
+ LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
|
|
|
+ LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
|
|
|
+ LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
|
|
|
+ }
|
|
|
+
|
|
|
vocab.print_info();
|
|
|
}
|
|
|
|
|
|
@@ -11814,6 +11878,150 @@ struct llm_build_plm : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llm_build_bailingmoe : public llm_graph_context {
|
|
|
+ llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ auto * inp_attn = build_attn_inp_kv_unified();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ // self-attention
|
|
|
+ {
|
|
|
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
|
+ ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
|
|
+
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ if (model.layers[il].bq) {
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ if (model.layers[il].bk) {
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ if (model.layers[il].bv) {
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
|
|
|
+
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, Qcur, inp_pos, rope_factors,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, Kcur, inp_pos, rope_factors,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ cur = build_attn(inp_attn, gf,
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
+ Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_rot)), il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1) {
|
|
|
+ // skip computing output for unused tokens
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ cur = build_norm(ffn_inp,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ ggml_tensor * moe_out =
|
|
|
+ build_moe_ffn(cur,
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
+ nullptr,
|
|
|
+ n_expert, n_expert_used,
|
|
|
+ LLM_FFN_SILU, hparams.expert_weights_norm,
|
|
|
+ false, hparams.expert_weights_scale,
|
|
|
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
|
+ il);
|
|
|
+ cb(moe_out, "ffn_moe_out", il);
|
|
|
+
|
|
|
+ // FFN shared expert
|
|
|
+ {
|
|
|
+ ggml_tensor * ffn_shexp = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
+ cb(ffn_shexp, "ffn_shexp", il);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = build_norm(cur,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
llama_memory_i * llama_model::create_memory() const {
|
|
|
llama_memory_i * res;
|
|
|
|
|
|
@@ -12090,6 +12298,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_plm>(*this, params, gf);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_BAILINGMOE:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
|
|
|
+ } break;
|
|
|
default:
|
|
|
GGML_ABORT("fatal error");
|
|
|
}
|
|
|
@@ -12221,6 +12433,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_GRANITE:
|
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
|
case LLM_ARCH_CHAMELEON:
|
|
|
+ case LLM_ARCH_BAILINGMOE:
|
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|
|
|
// the pairs of head values are offset by n_rot/2
|