|
|
@@ -5,7 +5,7 @@ import json
|
|
|
import torch
|
|
|
import numpy as np
|
|
|
from gguf import *
|
|
|
-from transformers import CLIPModel, CLIPProcessor
|
|
|
+from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
|
|
|
|
|
|
TEXT = "clip.text"
|
|
|
VISION = "clip.vision"
|
|
|
@@ -78,11 +78,19 @@ ap.add_argument("--text-only", action="store_true", required=False,
|
|
|
help="Save a text-only model. It can't be used to encode images")
|
|
|
ap.add_argument("--vision-only", action="store_true", required=False,
|
|
|
help="Save a vision-only model. It can't be used to encode texts")
|
|
|
+ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
|
|
|
+ help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
|
|
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
|
|
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
|
|
|
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
|
|
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
|
|
+# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
|
|
+default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
|
|
+default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
|
|
+ap.add_argument('--image_mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
|
|
+ap.add_argument('--image_std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
|
|
|
|
|
+# with proper
|
|
|
args = ap.parse_args()
|
|
|
|
|
|
|
|
|
@@ -96,15 +104,22 @@ if args.use_f32:
|
|
|
# output in the same directory as the model if output_dir is None
|
|
|
dir_model = args.model_dir
|
|
|
|
|
|
-
|
|
|
-with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
|
|
- vocab = json.load(f)
|
|
|
- tokens = [key for key in vocab]
|
|
|
+if args.clip_model_is_vision:
|
|
|
+ vocab = None
|
|
|
+ tokens = None
|
|
|
+else:
|
|
|
+ with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
|
|
+ vocab = json.load(f)
|
|
|
+ tokens = [key for key in vocab]
|
|
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
|
config = json.load(f)
|
|
|
- v_hparams = config["vision_config"]
|
|
|
- t_hparams = config["text_config"]
|
|
|
+ if args.clip_model_is_vision:
|
|
|
+ v_hparams = config
|
|
|
+ t_hparams = None
|
|
|
+ else:
|
|
|
+ v_hparams = config["vision_config"]
|
|
|
+ t_hparams = config["text_config"]
|
|
|
|
|
|
# possible data types
|
|
|
# ftype == 0 -> float32
|
|
|
@@ -117,9 +132,12 @@ ftype = 1
|
|
|
if args.use_f32:
|
|
|
ftype = 0
|
|
|
|
|
|
-
|
|
|
-model = CLIPModel.from_pretrained(dir_model)
|
|
|
-processor = CLIPProcessor.from_pretrained(dir_model)
|
|
|
+if args.clip_model_is_vision:
|
|
|
+ model = CLIPVisionModel.from_pretrained(dir_model)
|
|
|
+ processor = None
|
|
|
+else:
|
|
|
+ model = CLIPModel.from_pretrained(dir_model)
|
|
|
+ processor = CLIPProcessor.from_pretrained(dir_model)
|
|
|
|
|
|
fname_middle = None
|
|
|
has_text_encoder = True
|
|
|
@@ -128,13 +146,13 @@ has_llava_projector = False
|
|
|
if args.text_only:
|
|
|
fname_middle = "text-"
|
|
|
has_vision_encoder = False
|
|
|
-elif args.vision_only:
|
|
|
- fname_middle = "vision-"
|
|
|
- has_text_encoder = False
|
|
|
elif args.llava_projector is not None:
|
|
|
fname_middle = "mmproj-"
|
|
|
has_text_encoder = False
|
|
|
has_llava_projector = True
|
|
|
+elif args.vision_only:
|
|
|
+ fname_middle = "vision-"
|
|
|
+ has_text_encoder = False
|
|
|
else:
|
|
|
fname_middle = ""
|
|
|
|
|
|
@@ -182,8 +200,12 @@ if has_vision_encoder:
|
|
|
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
|
|
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
|
|
|
|
|
- image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
|
|
|
- image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
|
|
|
+ if processor is not None:
|
|
|
+ image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
|
|
+ image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
|
|
|
+ else:
|
|
|
+ image_mean = args.image_mean if args.image_mean is not None else default_image_mean
|
|
|
+ image_std = args.image_std if args.image_std is not None else default_image_std
|
|
|
fout.add_array("clip.vision.image_mean", image_mean)
|
|
|
fout.add_array("clip.vision.image_std", image_std)
|
|
|
|