|
|
@@ -2310,16 +2310,17 @@ struct llama_vocab {
|
|
|
id special_cls_id = -1;
|
|
|
id special_mask_id = -1;
|
|
|
|
|
|
- int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
|
|
|
- int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
|
|
|
-
|
|
|
id linefeed_id = 13;
|
|
|
id special_prefix_id = -1;
|
|
|
id special_suffix_id = -1;
|
|
|
id special_middle_id = -1;
|
|
|
id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
|
|
|
|
|
|
- bool add_space_prefix = true;
|
|
|
+ // tokenizer flags
|
|
|
+ bool tokenizer_add_space_prefix = true;
|
|
|
+ bool tokenizer_add_bos = false;
|
|
|
+ bool tokenizer_add_eos = false;
|
|
|
+ bool tokenizer_ignore_merges = false;
|
|
|
|
|
|
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
|
|
|
GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
|
|
@@ -4770,7 +4771,7 @@ static void llm_load_vocab(
|
|
|
|
|
|
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
|
|
if (add_space_prefix_keyidx != -1) {
|
|
|
- vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
|
|
+ vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
|
|
} // The default value of add_space_prefix is true.
|
|
|
} else if (tokenizer_model == "bert") {
|
|
|
vocab.type = LLAMA_VOCAB_TYPE_WPM;
|
|
|
@@ -4783,13 +4784,13 @@ static void llm_load_vocab(
|
|
|
vocab.special_pad_id = 0;
|
|
|
vocab.special_cls_id = 101;
|
|
|
vocab.special_mask_id = 103;
|
|
|
- vocab.add_space_prefix = false;
|
|
|
+ vocab.tokenizer_add_space_prefix = false;
|
|
|
} else if (tokenizer_model == "gpt2") {
|
|
|
vocab.type = LLAMA_VOCAB_TYPE_BPE;
|
|
|
|
|
|
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
|
|
if (add_space_prefix_keyidx != -1) {
|
|
|
- vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
|
|
+ vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
|
|
}
|
|
|
|
|
|
// read bpe merges and populate bpe ranks
|
|
|
@@ -4847,6 +4848,8 @@ static void llm_load_vocab(
|
|
|
tokenizer_pre == "llama-v3" ||
|
|
|
tokenizer_pre == "llama-bpe") {
|
|
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
|
|
+ vocab.tokenizer_ignore_merges = true;
|
|
|
+ vocab.tokenizer_add_bos = true;
|
|
|
} else if (
|
|
|
tokenizer_pre == "deepseek-llm") {
|
|
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
|
|
|
@@ -4897,6 +4900,14 @@ static void llm_load_vocab(
|
|
|
} else {
|
|
|
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
|
|
}
|
|
|
+ } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
|
|
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ vocab.tokenizer_add_bos = true;
|
|
|
+ vocab.tokenizer_add_eos = false;
|
|
|
+ } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
|
|
|
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ vocab.tokenizer_add_bos = true;
|
|
|
+ vocab.tokenizer_add_eos = false;
|
|
|
} else {
|
|
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
}
|
|
|
@@ -5041,10 +5052,10 @@ static void llm_load_vocab(
|
|
|
bool temp = true;
|
|
|
|
|
|
if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
|
|
|
- vocab.special_add_bos = int(temp);
|
|
|
+ vocab.tokenizer_add_bos = temp;
|
|
|
}
|
|
|
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
|
|
|
- vocab.special_add_eos = int(temp);
|
|
|
+ vocab.tokenizer_add_eos = temp;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@@ -5144,7 +5155,7 @@ static void llm_load_vocab(
|
|
|
);
|
|
|
|
|
|
// set attributes by model/tokenizer name
|
|
|
- if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
|
|
|
+ if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
|
|
|
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
|
|
|
} else if (_contains_any(model_name, {"phi-3", "phi3"})) {
|
|
|
for (auto id : vocab.cache_special_tokens) {
|
|
|
@@ -13158,112 +13169,142 @@ struct llm_bigram_bpe {
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_bpe {
|
|
|
- llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
|
|
|
-
|
|
|
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
- int final_prev_index = -1;
|
|
|
- bool ignore_merges = false;
|
|
|
-
|
|
|
- std::vector<std::string> word_collection;
|
|
|
- switch (vocab.type) {
|
|
|
- case LLAMA_VOCAB_TYPE_BPE:
|
|
|
- switch (vocab.type_pre) {
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
|
|
|
- ignore_merges = true;
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- // original regex from tokenizer.json
|
|
|
- //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
-
|
|
|
- // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
|
|
|
- "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_DBRX:
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_SMAUG:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- // same as llama3
|
|
|
- "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "[\r\n]",
|
|
|
- "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
|
|
- "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
|
|
- "\\s+$",
|
|
|
- "[一-龥ࠀ-一가-]+",
|
|
|
- "\\p{N}+",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "[\r\n]",
|
|
|
- "\\s?\\p{L}+",
|
|
|
- "\\s?\\p{P}+",
|
|
|
- "[一-龥ࠀ-一가-]+",
|
|
|
- "\\p{N}",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_FALCON:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "[\\p{P}\\$\\+<=>\\^~\\|]+",
|
|
|
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
- "[0-9][0-9][0-9]",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_MPT:
|
|
|
- // TODO: MPT pre-tokenization regexes are unknown
|
|
|
- // the following are close, but not exact. run the following:
|
|
|
- // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
|
|
|
- GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "\\s?\\p{L}+",
|
|
|
- "\\s?\\p{P}+",
|
|
|
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "\\p{N}",
|
|
|
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- // original regex from tokenizer.json
|
|
|
- // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
|
|
- "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
- });
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_PRE_TYPE_PORO:
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- " ?[^(\\s|.,!?…。,、।۔،)]+",
|
|
|
- });
|
|
|
- break;
|
|
|
- default:
|
|
|
- // default regex for BPE tokenization pre-processing
|
|
|
- word_collection = unicode_regex_split(text, {
|
|
|
- "[\\p{P}\\$\\+<=>\\^~\\|]+",
|
|
|
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
- "\\p{N}+",
|
|
|
- "[0-9][0-9][0-9]",
|
|
|
- });
|
|
|
- break;
|
|
|
- }
|
|
|
+ llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
|
|
|
+ GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
|
|
|
+ switch (vocab.type_pre) {
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
|
|
|
+ regex_exprs = {
|
|
|
+ // original regex from tokenizer.json
|
|
|
+ //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
+
|
|
|
+ // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
|
|
|
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_DBRX:
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_SMAUG:
|
|
|
+ regex_exprs = {
|
|
|
+ // same as llama3
|
|
|
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
|
|
+ regex_exprs = {
|
|
|
+ "[\r\n]",
|
|
|
+ "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
|
|
+ "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
|
|
+ "\\s+$",
|
|
|
+ "[一-龥ࠀ-一가-]+",
|
|
|
+ "\\p{N}+",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
|
|
+ regex_exprs = {
|
|
|
+ "[\r\n]",
|
|
|
+ "\\s?\\p{L}+",
|
|
|
+ "\\s?\\p{P}+",
|
|
|
+ "[一-龥ࠀ-一가-]+",
|
|
|
+ "\\p{N}",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_FALCON:
|
|
|
+ regex_exprs = {
|
|
|
+ "[\\p{P}\\$\\+<=>\\^~\\|`]+",
|
|
|
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
+ "[0-9][0-9][0-9]",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_MPT:
|
|
|
+ // TODO: MPT pre-tokenization regexes are unknown
|
|
|
+ // the following are close, but not exact. run the following:
|
|
|
+ // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
|
|
|
+ GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
|
|
|
+ regex_exprs = {
|
|
|
+ "\\s?\\p{L}+",
|
|
|
+ "\\s?\\p{P}+",
|
|
|
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
|
|
+ regex_exprs = {
|
|
|
+ "\\p{N}",
|
|
|
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
|
|
+ regex_exprs = {
|
|
|
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
|
|
+ regex_exprs = {
|
|
|
+ // original regex from tokenizer.json
|
|
|
+ // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
|
|
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
|
+ };
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_PRE_TYPE_PORO:
|
|
|
+ regex_exprs = {
|
|
|
+ " ?[^(\\s|.,!?…。,、।۔،)]+",
|
|
|
+ };
|
|
|
break;
|
|
|
default:
|
|
|
- GGML_ASSERT(false);
|
|
|
+ // default regex for BPE tokenization pre-processing
|
|
|
+ regex_exprs = {
|
|
|
+ "[\\p{P}\\$\\+<=>\\^~\\|]+",
|
|
|
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
|
+ "\\p{N}+",
|
|
|
+ "[0-9][0-9][0-9]",
|
|
|
+ };
|
|
|
break;
|
|
|
}
|
|
|
+ }
|
|
|
+
|
|
|
+ void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
|
|
|
+ output.push_back(token_id);
|
|
|
+ }
|
|
|
+
|
|
|
+ bool append_bos(std::vector<llama_vocab::id> & output) const {
|
|
|
+ if (vocab.tokenizer_add_bos) {
|
|
|
+ GGML_ASSERT(vocab.special_bos_id != -1);
|
|
|
+ output.push_back(vocab.special_bos_id);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ bool append_eos(std::vector<llama_vocab::id> & output) const {
|
|
|
+ if (vocab.tokenizer_add_eos) {
|
|
|
+ GGML_ASSERT(vocab.special_eos_id != -1);
|
|
|
+ output.push_back(vocab.special_eos_id);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
|
|
|
+ if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
+ LLAMA_LOG_WARN(
|
|
|
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
+ "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
+ }
|
|
|
+ if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
|
|
|
+ LLAMA_LOG_WARN(
|
|
|
+ "%s: Added a EOS token to the prompt as specified by the model but the prompt "
|
|
|
+ "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
|
|
|
+ "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
+ int final_prev_index = -1;
|
|
|
+
|
|
|
+ const auto word_collection = unicode_regex_split(text, regex_exprs);
|
|
|
|
|
|
symbols_final.clear();
|
|
|
|
|
|
@@ -13274,7 +13315,7 @@ struct llm_tokenizer_bpe {
|
|
|
int index = 0;
|
|
|
size_t offset = 0;
|
|
|
|
|
|
- if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
|
|
+ if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
|
|
symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
|
|
|
offset = word.size();
|
|
|
}
|
|
|
@@ -13355,10 +13396,9 @@ struct llm_tokenizer_bpe {
|
|
|
for (auto j = str.begin(); j != str.end(); ++j) {
|
|
|
std::string byte_str(1, *j);
|
|
|
auto token_multibyte = vocab.token_to_id.find(byte_str);
|
|
|
- if (token_multibyte == vocab.token_to_id.end()) {
|
|
|
- throw std::runtime_error("ERROR: byte not found in vocab");
|
|
|
+ if (token_multibyte != vocab.token_to_id.end()) {
|
|
|
+ output.push_back(token_multibyte->second);
|
|
|
}
|
|
|
- output.push_back((*token_multibyte).second);
|
|
|
}
|
|
|
} else {
|
|
|
output.push_back((*token).second);
|
|
|
@@ -13397,6 +13437,8 @@ private:
|
|
|
|
|
|
const llama_vocab & vocab;
|
|
|
|
|
|
+ std::vector<std::string> regex_exprs;
|
|
|
+
|
|
|
std::vector<llm_symbol> symbols;
|
|
|
std::vector<llm_symbol> symbols_final;
|
|
|
|
|
|
@@ -13677,7 +13719,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|
|
|
|
|
bool is_prev_special = false;
|
|
|
|
|
|
- if (add_special && vocab.special_add_bos != 0) {
|
|
|
+ if (add_special && vocab.tokenizer_add_bos) {
|
|
|
GGML_ASSERT(vocab.special_bos_id != -1);
|
|
|
output.push_back(vocab.special_bos_id);
|
|
|
is_prev_special = true;
|
|
|
@@ -13687,7 +13729,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
|
|
|
- if (vocab.add_space_prefix) {
|
|
|
+ if (vocab.tokenizer_add_space_prefix) {
|
|
|
if (!output.size() || is_prev_special) { // prefix with space if first token
|
|
|
raw_text = " " + raw_text;
|
|
|
}
|
|
|
@@ -13705,23 +13747,24 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
+ if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
LLAMA_LOG_WARN(
|
|
|
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
"Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
}
|
|
|
|
|
|
- if (add_special && vocab.special_add_eos == 1) {
|
|
|
+ if (add_special && vocab.tokenizer_add_eos) {
|
|
|
GGML_ASSERT(vocab.special_eos_id != -1);
|
|
|
output.push_back(vocab.special_eos_id);
|
|
|
}
|
|
|
} break;
|
|
|
case LLAMA_VOCAB_TYPE_BPE:
|
|
|
{
|
|
|
- if (add_special && vocab.special_add_bos != 0) {
|
|
|
- GGML_ASSERT(vocab.special_bos_id != -1);
|
|
|
- output.push_back(vocab.special_bos_id);
|
|
|
+ llm_tokenizer_bpe tokenizer(vocab);
|
|
|
+
|
|
|
+ if (add_special) {
|
|
|
+ tokenizer.append_bos(output);
|
|
|
}
|
|
|
|
|
|
for (const auto & fragment : fragment_buffer) {
|
|
|
@@ -13731,23 +13774,15 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|
|
#ifdef PRETOKENIZERDEBUG
|
|
|
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
|
|
#endif
|
|
|
- llm_tokenizer_bpe tokenizer(vocab);
|
|
|
tokenizer.tokenize(raw_text, output);
|
|
|
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
- output.push_back(fragment.token);
|
|
|
+ tokenizer.append(fragment.token, output);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
- LLAMA_LOG_WARN(
|
|
|
- "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
- "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
- "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
- }
|
|
|
-
|
|
|
- if (add_special && vocab.special_add_eos == 1) {
|
|
|
- GGML_ASSERT(vocab.special_add_eos != -1);
|
|
|
- output.push_back(vocab.special_eos_id);
|
|
|
+ if (add_special) {
|
|
|
+ tokenizer.append_eos(output);
|
|
|
+ tokenizer.check_double_bos_eos(output);
|
|
|
}
|
|
|
} break;
|
|
|
case LLAMA_VOCAB_TYPE_WPM:
|
|
|
@@ -18320,11 +18355,11 @@ llama_token llama_token_nl(const struct llama_model * model) {
|
|
|
}
|
|
|
|
|
|
int32_t llama_add_bos_token(const struct llama_model * model) {
|
|
|
- return model->vocab.special_add_bos;
|
|
|
+ return model->vocab.tokenizer_add_bos;
|
|
|
}
|
|
|
|
|
|
int32_t llama_add_eos_token(const struct llama_model * model) {
|
|
|
- return model->vocab.special_add_eos;
|
|
|
+ return model->vocab.tokenizer_add_eos;
|
|
|
}
|
|
|
|
|
|
llama_token llama_token_prefix(const struct llama_model * model) {
|