|
|
@@ -2289,6 +2289,66 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
|
|
}
|
|
|
|
|
|
#ifdef USE_CUDA_GRAPH
|
|
|
+static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
|
|
+ std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) {
|
|
|
+
|
|
|
+ // Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
|
|
+ cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
|
|
+ for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
|
+ ggml_tensor * node = cgraph->nodes[i];
|
|
|
+
|
|
|
+ if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
|
|
|
+ use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
|
|
+#ifndef NDEBUG
|
|
|
+ GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
|
|
|
+#endif
|
|
|
+ }
|
|
|
+
|
|
|
+ if (node->op == GGML_OP_MUL_MAT_ID) {
|
|
|
+ use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
|
|
+#ifndef NDEBUG
|
|
|
+ GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
|
|
+#endif
|
|
|
+ }
|
|
|
+
|
|
|
+ if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
|
|
|
+ // disable CUDA graphs for batch size > 1 for now.
|
|
|
+ // Changes in batch size or context size can cause changes to the grid size of some kernels.
|
|
|
+ use_cuda_graph = false;
|
|
|
+#ifndef NDEBUG
|
|
|
+ GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
|
|
+#endif
|
|
|
+ }
|
|
|
+
|
|
|
+ if (node->op == GGML_OP_CPY) {
|
|
|
+ // store the copy op parameter which changes with each token.
|
|
|
+ cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
|
|
+ // store a pointer to each copy op CUDA kernel to identify it later
|
|
|
+ void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
|
|
+ if (!ptr) {
|
|
|
+ use_cuda_graph = false;
|
|
|
+#ifndef NDEBUG
|
|
|
+ GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
|
|
|
+#endif
|
|
|
+ } else {
|
|
|
+ if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
|
|
|
+ ggml_cuda_cpy_fn_ptrs.push_back(ptr);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!use_cuda_graph) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return use_cuda_graph;
|
|
|
+}
|
|
|
+
|
|
|
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
|
|
graph_node_properties->node_address = node->data;
|
|
|
graph_node_properties->node_op = node->op;
|
|
|
@@ -2339,149 +2399,105 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
-#endif
|
|
|
|
|
|
-static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
|
|
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
-
|
|
|
- ggml_cuda_set_device(cuda_ctx->device);
|
|
|
+static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) {
|
|
|
|
|
|
-#ifdef USE_CUDA_GRAPH
|
|
|
- static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
|
|
+ if (cuda_graph_update_required) {
|
|
|
+ // Extract nodes from graph
|
|
|
+ // First call with null argument gets number of nodes in graph
|
|
|
+ CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
|
|
+ // Subsequent call with non-null argument gets nodes
|
|
|
+ cuda_ctx->cuda_graph->nodes.clear();
|
|
|
+ cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
|
|
+ cuda_ctx->cuda_graph->params.clear();
|
|
|
+ cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
|
|
+ if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
|
|
+ CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
|
|
|
|
|
- // Objects required for CUDA Graph
|
|
|
- if (cuda_ctx->cuda_graph == nullptr) {
|
|
|
- cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
|
|
|
+ // Loop over nodes, and extract kernel parameters from each node
|
|
|
+ for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
|
|
+ cudaGraphNodeType node_type;
|
|
|
+ CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
|
|
+ if (node_type == cudaGraphNodeTypeKernel) {
|
|
|
+ cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
|
|
+ if (stat == cudaErrorInvalidDeviceFunction) {
|
|
|
+ // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
|
|
+ // We don't need to update blas nodes, so clear error and move on.
|
|
|
+ cudaGetLastError();
|
|
|
+ } else {
|
|
|
+ GGML_ASSERT(stat == cudaSuccess);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // One of the arguments to the copy kernel is updated for each token, hence we need to
|
|
|
+ // replace that argument with the updated value in the CUDA graph
|
|
|
+ // on update steps, the live parameters will already be captured
|
|
|
+ int k = 0;
|
|
|
+ for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
|
|
+ if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
|
|
|
+ char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
|
|
+ cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
|
|
+ CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
+}
|
|
|
+
|
|
|
+static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
|
|
|
|
|
|
- bool use_cuda_graph = true;
|
|
|
bool cuda_graph_update_required = false;
|
|
|
- // vector of pointers to CUDA cpy kernels, which are required to identify
|
|
|
- // kernel parameters which need updated in the graph for each token
|
|
|
- std::vector<void *> ggml_cuda_cpy_fn_ptrs;
|
|
|
|
|
|
- if (cuda_ctx->cuda_graph->graph == nullptr) {
|
|
|
- if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
|
|
|
- cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
|
|
-#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
|
|
-#endif
|
|
|
- }
|
|
|
+ if (cuda_ctx->cuda_graph->instance == nullptr) {
|
|
|
+ cuda_graph_update_required = true;
|
|
|
}
|
|
|
|
|
|
- // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
|
|
|
- // or previous graph capture failure.
|
|
|
- // Also disable for multi-gpu for now. TO DO investigate
|
|
|
- if (disable_cuda_graphs_due_to_env
|
|
|
- || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|
|
|
- || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|
|
|
- || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
|
|
|
- use_cuda_graph = false;
|
|
|
+ // Check if the graph size has changed
|
|
|
+ if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
|
|
|
+ cuda_graph_update_required = true;
|
|
|
+ cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
|
|
|
}
|
|
|
|
|
|
- if (use_cuda_graph) {
|
|
|
- if (cuda_ctx->cuda_graph->instance == nullptr) {
|
|
|
- cuda_graph_update_required = true;
|
|
|
+ // Loop over nodes in GGML graph to determine if CUDA graph update is required
|
|
|
+ // and store properties to allow this comparison for the next token
|
|
|
+ for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
|
+ bool has_matching_properties = true;
|
|
|
+ if (!cuda_graph_update_required) {
|
|
|
+ has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
|
|
}
|
|
|
-
|
|
|
- // Check if the graph size has changed
|
|
|
- if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
|
|
|
+ if (!has_matching_properties) {
|
|
|
cuda_graph_update_required = true;
|
|
|
- cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
|
|
|
- }
|
|
|
-
|
|
|
- // Loop over nodes in GGML graph to determine if CUDA graph update is required
|
|
|
- // and store properties to allow this comparison for the next token
|
|
|
- for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
|
- bool has_matching_properties = true;
|
|
|
- if (!cuda_graph_update_required) {
|
|
|
- has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
|
|
- }
|
|
|
- if (!has_matching_properties) {
|
|
|
- cuda_graph_update_required = true;
|
|
|
- }
|
|
|
- set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
|
|
}
|
|
|
+ set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
|
|
+ }
|
|
|
|
|
|
- // Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
|
|
- cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
|
|
- for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
|
- ggml_tensor * node = cgraph->nodes[i];
|
|
|
-
|
|
|
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
|
|
|
- use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
|
|
-#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- if (node->op == GGML_OP_MUL_MAT_ID) {
|
|
|
- use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
|
|
-#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
|
|
|
- // disable CUDA graphs for batch size > 1 for now.
|
|
|
- // Changes in batch size or context size can cause changes to the grid size of some kernels.
|
|
|
- use_cuda_graph = false;
|
|
|
-#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- if (node->op == GGML_OP_CPY) {
|
|
|
- // store the copy op parameter which changes with each token.
|
|
|
- cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
|
|
- // store a pointer to each copy op CUDA kernel to identify it later
|
|
|
- void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
|
|
- if (!ptr) {
|
|
|
- use_cuda_graph = false;
|
|
|
-#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
|
|
|
-#endif
|
|
|
- } else {
|
|
|
- if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
|
|
|
- ggml_cuda_cpy_fn_ptrs.push_back(ptr);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (!use_cuda_graph) {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
+ return cuda_graph_update_required;
|
|
|
+}
|
|
|
|
|
|
- // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
|
|
- if (use_cuda_graph && cuda_graph_update_required) {
|
|
|
- cuda_ctx->cuda_graph->number_consecutive_updates++;
|
|
|
- } else {
|
|
|
- cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
|
|
- }
|
|
|
+static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
|
|
|
|
|
- if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
|
|
- cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
|
|
+ cudaGraphExecUpdateResultInfo result_info;
|
|
|
+ cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
|
|
+ if (stat == cudaErrorGraphExecUpdateFailure) {
|
|
|
#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
|
|
+ GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
|
|
|
#endif
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
|
|
|
- CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
|
|
+ // The pre-existing graph exec cannot be updated due to violated constraints
|
|
|
+ // so instead clear error and re-instantiate
|
|
|
+ cudaGetLastError();
|
|
|
+ CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
|
|
+ cuda_ctx->cuda_graph->instance = nullptr;
|
|
|
+ CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
|
|
+ } else {
|
|
|
+ GGML_ASSERT(stat == cudaSuccess);
|
|
|
}
|
|
|
+}
|
|
|
+#endif
|
|
|
|
|
|
-#else
|
|
|
- bool use_cuda_graph = false;
|
|
|
- bool cuda_graph_update_required = false;
|
|
|
-#endif // USE_CUDA_GRAPH
|
|
|
-
|
|
|
- bool graph_evaluated_or_captured = false;
|
|
|
+static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
|
|
+ [[maybe_unused]] std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph,
|
|
|
+ bool & cuda_graph_update_required) {
|
|
|
|
|
|
while (!graph_evaluated_or_captured) {
|
|
|
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
|
|
@@ -2519,19 +2535,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
|
|
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
|
|
|
cuda_ctx->cuda_graph->graph = nullptr;
|
|
|
}
|
|
|
- CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
|
|
|
|
|
|
-#if 0
|
|
|
- if (disable_cuda_graphs_due_to_failed_capture) {
|
|
|
- use_cuda_graph = false;
|
|
|
- cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
|
|
|
-#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
|
|
|
-#endif
|
|
|
- } else {
|
|
|
- graph_evaluated_or_captured = true; // CUDA graph has been captured
|
|
|
- }
|
|
|
-#endif
|
|
|
+ CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
|
|
|
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
|
|
} else {
|
|
|
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
|
|
|
@@ -2544,72 +2549,91 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
|
|
}
|
|
|
|
|
|
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
|
|
|
+ maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required);
|
|
|
|
|
|
- if (cuda_graph_update_required) {
|
|
|
- // Extract nodes from graph
|
|
|
- // First call with null argument gets number of nodes in graph
|
|
|
- CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
|
|
- // Subsequent call with non-null argument gets nodes
|
|
|
- cuda_ctx->cuda_graph->nodes.clear();
|
|
|
- cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
|
|
- cuda_ctx->cuda_graph->params.clear();
|
|
|
- cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
|
|
- if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
|
|
- CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
|
|
-
|
|
|
- // Loop over nodes, and extract kernel parameters from each node
|
|
|
- for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
|
|
- cudaGraphNodeType node_type;
|
|
|
- CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
|
|
- if (node_type == cudaGraphNodeTypeKernel) {
|
|
|
- cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
|
|
- if (stat == cudaErrorInvalidDeviceFunction) {
|
|
|
- // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
|
|
- // We don't need to update blas nodes, so clear error and move on.
|
|
|
- cudaGetLastError();
|
|
|
- } else {
|
|
|
- GGML_ASSERT(stat == cudaSuccess);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ // Update graph executable
|
|
|
+ update_cuda_graph_executable(cuda_ctx);
|
|
|
+
|
|
|
+ // Launch graph
|
|
|
+ CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
|
|
|
+#else
|
|
|
+ graph_evaluated_or_captured = true;
|
|
|
+#endif // USE_CUDA_GRAPH
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
|
|
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
+
|
|
|
+ ggml_cuda_set_device(cuda_ctx->device);
|
|
|
+
|
|
|
+ // vector of pointers to CUDA cpy kernels, which are required to identify
|
|
|
+ // kernel parameters which need updated in the graph for each token
|
|
|
+ std::vector<void *> ggml_cuda_cpy_fn_ptrs;
|
|
|
+
|
|
|
+#ifdef USE_CUDA_GRAPH
|
|
|
+ static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
|
|
+
|
|
|
+ // Objects required for CUDA Graph
|
|
|
+ if (cuda_ctx->cuda_graph == nullptr) {
|
|
|
+ cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
|
|
|
+ }
|
|
|
+
|
|
|
+ bool use_cuda_graph = true;
|
|
|
+ bool cuda_graph_update_required = false;
|
|
|
+
|
|
|
+ if (cuda_ctx->cuda_graph->graph == nullptr) {
|
|
|
+ if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
|
|
|
+ cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
|
|
+#ifndef NDEBUG
|
|
|
+ GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
|
|
+#endif
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- // One of the arguments to the copy kernel is updated for each token, hence we need to
|
|
|
- // replace that argument with the updated value in the CUDA graph
|
|
|
- if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
|
|
|
- int k = 0;
|
|
|
- for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
|
|
- if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
|
|
|
- char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
|
|
- cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
|
|
- CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
|
|
- }
|
|
|
- }
|
|
|
+ // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
|
|
|
+ // or previous graph capture failure.
|
|
|
+ // Also disable for multi-gpu for now. TO DO investigate
|
|
|
+ if (disable_cuda_graphs_due_to_env
|
|
|
+ || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|
|
|
+ || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|
|
|
+ || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
|
|
|
+ use_cuda_graph = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (use_cuda_graph) {
|
|
|
+ cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
|
|
|
+
|
|
|
+ use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph,
|
|
|
+ ggml_cuda_cpy_fn_ptrs, use_cuda_graph);
|
|
|
+
|
|
|
+ // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
|
|
+ if (use_cuda_graph && cuda_graph_update_required) {
|
|
|
+ cuda_ctx->cuda_graph->number_consecutive_updates++;
|
|
|
+ } else {
|
|
|
+ cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
|
|
}
|
|
|
|
|
|
- // Update graph executable
|
|
|
- cudaGraphExecUpdateResultInfo result_info;
|
|
|
- cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
|
|
- if (stat == cudaErrorGraphExecUpdateFailure) {
|
|
|
+ if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
|
|
+ cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
|
|
#ifndef NDEBUG
|
|
|
- GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
|
|
|
+ GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
|
|
#endif
|
|
|
- // The pre-existing graph exec cannot be updated due to violated constraints
|
|
|
- // so instead clear error and re-instantiate
|
|
|
- cudaGetLastError();
|
|
|
- CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
|
|
- cuda_ctx->cuda_graph->instance = nullptr;
|
|
|
- CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
|
|
- } else {
|
|
|
- GGML_ASSERT(stat == cudaSuccess);
|
|
|
}
|
|
|
- // Launch graph
|
|
|
- CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
|
|
|
+ CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
|
|
+ }
|
|
|
+
|
|
|
#else
|
|
|
- graph_evaluated_or_captured = true;
|
|
|
+ bool use_cuda_graph = false;
|
|
|
+ bool cuda_graph_update_required = false;
|
|
|
#endif // USE_CUDA_GRAPH
|
|
|
- }
|
|
|
+
|
|
|
+ bool graph_evaluated_or_captured = false;
|
|
|
+
|
|
|
+ evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
|
|
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
|
}
|