|
|
@@ -196,9 +196,6 @@ class GGUFWriter:
|
|
|
if self.state is not WriterState.EMPTY:
|
|
|
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
|
|
|
|
|
- if raw_dtype is None and tensor_dtype not in (np.float32, np.float16):
|
|
|
- raise ValueError("Only F32 and F16 tensors are supported for now")
|
|
|
-
|
|
|
encoded_name = name.encode("utf8")
|
|
|
self.ti_data += self._pack("Q", len(encoded_name))
|
|
|
self.ti_data += encoded_name
|
|
|
@@ -207,7 +204,18 @@ class GGUFWriter:
|
|
|
for i in range(n_dims):
|
|
|
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
|
|
if raw_dtype is None:
|
|
|
- dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
|
|
|
+ if tensor_shape == np.float32:
|
|
|
+ dtype = GGMLQuantizationType.F32
|
|
|
+ elif tensor_dtype == np.float16:
|
|
|
+ dtype = GGMLQuantizationType.F16
|
|
|
+ elif tensor_dtype == np.int8:
|
|
|
+ dtype = GGMLQuantizationType.I8
|
|
|
+ elif tensor_dtype == np.int16:
|
|
|
+ dtype = GGMLQuantizationType.I16
|
|
|
+ elif tensor_dtype == np.int32:
|
|
|
+ dtype = GGMLQuantizationType.I32
|
|
|
+ else:
|
|
|
+ raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
|
|
|
else:
|
|
|
dtype = raw_dtype
|
|
|
self.ti_data += self._pack("I", dtype)
|