|
|
@@ -92,6 +92,15 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
|
|
dst[i] = x[i] * x[i];
|
|
|
}
|
|
|
|
|
|
+static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
|
|
|
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
+
|
|
|
+ if (i >= k) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ dst[i] = sqrtf(x[i]);
|
|
|
+}
|
|
|
+
|
|
|
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
|
|
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
|
@@ -142,6 +151,11 @@ static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
|
|
|
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
|
}
|
|
|
|
|
|
+static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
|
+ const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
|
|
|
+ sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
|
+}
|
|
|
+
|
|
|
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
const float * src0_d = (const float *)src0->data;
|
|
|
@@ -284,3 +298,17 @@ void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
|
|
|
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
|
}
|
|
|
+
|
|
|
+void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
+ const ggml_tensor * src0 = dst->src[0];
|
|
|
+ const float * src0_d = (const float *)src0->data;
|
|
|
+ float * dst_d = (float *)dst->data;
|
|
|
+ cudaStream_t stream = ctx.stream();
|
|
|
+
|
|
|
+ GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
+
|
|
|
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
+
|
|
|
+ sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
|
+}
|