|
@@ -16,17 +16,6 @@ llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_gr
|
|
|
ggml_tensor * inp_pos = build_inp_pos();
|
|
ggml_tensor * inp_pos = build_inp_pos();
|
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
|
|
|
|
- ggml_tensor * causal_mask =
|
|
|
|
|
- ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
|
|
|
|
|
- GGML_TRI_TYPE_LOWER);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
|
|
|
|
|
- ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
|
|
|
|
|
-
|
|
|
|
|
- ggml_build_forward_expand(gf, causal_mask);
|
|
|
|
|
- ggml_build_forward_expand(gf, identity);
|
|
|
|
|
- ggml_build_forward_expand(gf, diag_mask);
|
|
|
|
|
-
|
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
|
ggml_tensor * inpSA = inpL;
|
|
ggml_tensor * inpSA = inpL;
|
|
|
|
|
|
|
@@ -36,7 +25,7 @@ llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_gr
|
|
|
// Determine layer type and build appropriate attention mechanism
|
|
// Determine layer type and build appropriate attention mechanism
|
|
|
if (hparams.is_recurrent(il)) {
|
|
if (hparams.is_recurrent(il)) {
|
|
|
// Linear attention layer (gated delta net)
|
|
// Linear attention layer (gated delta net)
|
|
|
- cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
|
|
|
|
|
|
|
+ cur = build_layer_attn_linear(inp->get_recr(), cur, il);
|
|
|
} else {
|
|
} else {
|
|
|
// Full attention layer
|
|
// Full attention layer
|
|
|
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, il);
|
|
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, il);
|
|
@@ -86,345 +75,6 @@ llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_gr
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
ggml_build_forward_expand(gf, cur);
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
-ggml_tensor * llm_build_qwen3next::build_delta_net_chunking(
|
|
|
|
|
- ggml_tensor * q,
|
|
|
|
|
- ggml_tensor * k,
|
|
|
|
|
- ggml_tensor * v,
|
|
|
|
|
- ggml_tensor * g,
|
|
|
|
|
- ggml_tensor * beta,
|
|
|
|
|
- ggml_tensor * state,
|
|
|
|
|
- ggml_tensor * causal_mask,
|
|
|
|
|
- ggml_tensor * identity,
|
|
|
|
|
- ggml_tensor * diag_mask,
|
|
|
|
|
- int il) {
|
|
|
|
|
- const int64_t S_k = q->ne[0];
|
|
|
|
|
- const int64_t H_k = q->ne[1];
|
|
|
|
|
- const int64_t n_tokens = q->ne[2];
|
|
|
|
|
- const int64_t n_seqs = q->ne[3];
|
|
|
|
|
-
|
|
|
|
|
- const int64_t S_v = v->ne[0];
|
|
|
|
|
- const int64_t H_v = v->ne[1];
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(v->ne[2] == n_tokens);
|
|
|
|
|
- GGML_ASSERT(k->ne[2] == n_tokens);
|
|
|
|
|
- GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
|
|
|
|
-
|
|
|
|
|
- const float eps_norm = hparams.f_norm_rms_eps;
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_l2_norm(ctx0, q, eps_norm);
|
|
|
|
|
- k = ggml_l2_norm(ctx0, k, eps_norm);
|
|
|
|
|
-
|
|
|
|
|
- const float scale = 1.0f / sqrtf(S_v);
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_scale(ctx0, q, scale);
|
|
|
|
|
-
|
|
|
|
|
- beta = ggml_sigmoid(ctx0, beta);
|
|
|
|
|
-
|
|
|
|
|
- cb(q, "q_in", il);
|
|
|
|
|
- cb(k, "k_in", il);
|
|
|
|
|
- cb(v, "v_in", il);
|
|
|
|
|
- cb(beta, "beta_in", il);
|
|
|
|
|
- cb(g, "g_in", il);
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
|
|
|
- k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
|
|
|
- v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
|
|
|
- g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
|
|
|
|
- state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- cb(q, "q_perm", il);
|
|
|
|
|
- cb(k, "k_perm", il);
|
|
|
|
|
- cb(v, "v_perm", il);
|
|
|
|
|
- cb(beta, "beta_perm", il);
|
|
|
|
|
- cb(g, "g_perm", il);
|
|
|
|
|
- cb(state, "state_in", il);
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- // Do padding
|
|
|
|
|
- const int64_t chunk_size = CHUNK_SIZE;
|
|
|
|
|
-
|
|
|
|
|
- const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
|
|
|
|
- const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
|
|
|
|
- k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
|
|
|
|
- v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
|
|
|
|
- g = ggml_pad(ctx0, g, pad, 0, 0, 0);
|
|
|
|
|
- beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
|
|
|
|
-
|
|
|
|
|
- cb(q, "q_pad", il);
|
|
|
|
|
- cb(k, "k_pad", il);
|
|
|
|
|
- cb(v, "v_pad", il);
|
|
|
|
|
- cb(beta, "beta_pad", il);
|
|
|
|
|
- cb(g, "g_pad", il);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
|
|
|
|
- ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
|
|
|
|
-
|
|
|
|
|
- cb(v_beta, "v_beta", il);
|
|
|
|
|
- cb(k_beta, "k_beta", il);
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
|
|
|
|
- k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
|
|
|
|
- k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
|
|
|
|
- v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
|
|
|
|
- v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
|
|
|
|
|
- beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
|
|
|
|
|
-
|
|
|
|
|
- cb(g_cumsum, "g_cumsum", il);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * gcs_i = ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
|
|
|
|
|
- ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * gcs_j_broadcast =
|
|
|
|
|
- ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
|
|
|
|
-
|
|
|
|
|
- cb(decay_mask, "decay_mask", il);
|
|
|
|
|
-
|
|
|
|
|
- decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
|
|
|
|
- decay_mask = ggml_exp(ctx0, decay_mask);
|
|
|
|
|
- decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
|
|
|
|
- ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
|
|
|
|
|
-
|
|
|
|
|
- cb(attn, "attn_pre_solve", il);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
|
|
|
|
|
- ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
|
|
|
|
- attn = ggml_mul(ctx0, lin_solve, causal_mask);
|
|
|
|
|
- attn = ggml_add(ctx0, attn, identity);
|
|
|
|
|
-
|
|
|
|
|
- cb(attn, "attn_solved", il);
|
|
|
|
|
-
|
|
|
|
|
- v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
|
|
|
|
|
- ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
|
|
|
|
|
-
|
|
|
|
|
- cb(kbeta_gexp, "kbeta_gexp", il);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * k_cumdecay =
|
|
|
|
|
- ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
|
|
|
|
-
|
|
|
|
|
- cb(k_cumdecay, "k_cumdecay", il);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * core_attn_out = nullptr;
|
|
|
|
|
- ggml_tensor * new_state = ggml_dup(ctx0, state);
|
|
|
|
|
-
|
|
|
|
|
- cb(new_state, "new_state", il);
|
|
|
|
|
-
|
|
|
|
|
- for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
|
|
|
|
- auto chunkify = [=](ggml_tensor * t) {
|
|
|
|
|
- return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
|
|
|
|
|
- t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
|
|
|
|
|
- };
|
|
|
|
|
-
|
|
|
|
|
- auto chunkify_g = [=](ggml_tensor * t) {
|
|
|
|
|
- return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, t->ne[1], 1, t->ne[3],
|
|
|
|
|
- t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
|
|
|
|
|
- };
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * k_chunk = chunkify(k);
|
|
|
|
|
- ggml_tensor * q_chunk = chunkify(q);
|
|
|
|
|
- ggml_tensor * v_chunk = chunkify(v);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_cs_chunk = chunkify_g(g_cumsum);
|
|
|
|
|
- ggml_tensor * g_cs_chunk_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cs_chunk));
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * decay_mask_chunk = chunkify(decay_mask);
|
|
|
|
|
- ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * gexp_chunk = ggml_exp(ctx0, g_cs_chunk_t);
|
|
|
|
|
-
|
|
|
|
|
- // attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
|
|
|
|
|
- attn = ggml_mul_mat(ctx0, k_chunk, q_chunk);
|
|
|
|
|
- attn = ggml_mul(ctx0, attn, decay_mask_chunk);
|
|
|
|
|
- attn = ggml_mul(ctx0, attn, diag_mask);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- // v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
|
|
|
|
|
- ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
|
|
|
|
-
|
|
|
|
|
- // v_new = v_i - v_prime
|
|
|
|
|
- ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
|
|
|
|
|
- ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
|
|
|
|
-
|
|
|
|
|
- // attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
|
|
|
|
|
- ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
|
|
|
|
|
- ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
|
|
|
|
-
|
|
|
|
|
- // core_attn_out[:, :, i] = attn_inter + attn @ v_new
|
|
|
|
|
- ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
|
|
|
|
-
|
|
|
|
|
- core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
|
|
|
|
|
-
|
|
|
|
|
- // g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
|
|
|
|
|
- // g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
|
|
|
|
|
- // key_gdiff = key * g_diff.unsqueeze(-1)
|
|
|
|
|
- // kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
|
|
|
|
- // last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_cum_last =
|
|
|
|
|
- ggml_cont(ctx0, ggml_view_4d(ctx0, g_cs_chunk_t, g_cs_chunk_t->ne[0], 1, g_cs_chunk_t->ne[2], g_cs_chunk_t->ne[3],
|
|
|
|
|
- g_cs_chunk_t->nb[1], g_cs_chunk_t->nb[2], g_cs_chunk_t->nb[3],
|
|
|
|
|
- g_cs_chunk_t->nb[0] * (g_cs_chunk_t->ne[1] - 1)));
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * gexp_last =
|
|
|
|
|
- ggml_reshape_4d(ctx0, ggml_exp(ctx0, g_cum_last), 1, 1, g_cum_last->ne[0] * g_cum_last->ne[2], g_cum_last->ne[3]);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_cum_last_3d =
|
|
|
|
|
- ggml_reshape_3d(ctx0, g_cum_last, g_cum_last->ne[0], g_cum_last->ne[2], g_cum_last->ne[3]);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_cumsum_3d = ggml_reshape_3d(ctx0, g_cs_chunk, g_cs_chunk->ne[0], g_cs_chunk->ne[2], g_cs_chunk->ne[3]);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum_3d, g_cum_last_3d));
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * key_gdiff = ggml_mul(ctx0, k_chunk,
|
|
|
|
|
- ggml_reshape_4d(ctx0, g_diff_exp, 1, g_diff_exp->ne[0], g_diff_exp->ne[1],
|
|
|
|
|
- g_diff_exp->ne[2] * g_diff_exp->ne[3]));
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff)));
|
|
|
|
|
-
|
|
|
|
|
- new_state = ggml_add(ctx0,
|
|
|
|
|
- ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last, gexp_last->ne[0], gexp_last->ne[1], H_v, n_seqs)),
|
|
|
|
|
- ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
|
|
|
|
- }
|
|
|
|
|
-
|
|
|
|
|
- core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, S_v, n_tokens, H_v, n_seqs, core_attn_out->nb[1], core_attn_out->nb[2], core_attn_out->nb[3], 0);
|
|
|
|
|
- cb(output_tokens, "output_tokens", il);
|
|
|
|
|
-
|
|
|
|
|
- // flatten output
|
|
|
|
|
- ggml_tensor * flat_output =
|
|
|
|
|
- ggml_cont_1d(ctx0, ggml_permute(ctx0, output_tokens, 0, 2, 1, 3), S_v * H_v * n_tokens * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * flat_state = ggml_cont_1d(ctx0, new_state, S_v * S_v * H_v * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- return ggml_concat(ctx0, flat_output, flat_state, 0);
|
|
|
|
|
-}
|
|
|
|
|
-
|
|
|
|
|
-ggml_tensor * llm_build_qwen3next::build_delta_net_autoregressive(
|
|
|
|
|
- ggml_tensor * q,
|
|
|
|
|
- ggml_tensor * k,
|
|
|
|
|
- ggml_tensor * v,
|
|
|
|
|
- ggml_tensor * g,
|
|
|
|
|
- ggml_tensor * beta,
|
|
|
|
|
- ggml_tensor * state,
|
|
|
|
|
- int il) {
|
|
|
|
|
- const int64_t S_k = q->ne[0];
|
|
|
|
|
- const int64_t H_k = q->ne[1];
|
|
|
|
|
- const int64_t n_tokens = q->ne[2];
|
|
|
|
|
- const int64_t n_seqs = q->ne[3];
|
|
|
|
|
-
|
|
|
|
|
- const int64_t S_v = v->ne[0];
|
|
|
|
|
- const int64_t H_v = v->ne[1];
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing
|
|
|
|
|
- GGML_ASSERT(v->ne[2] == n_tokens);
|
|
|
|
|
- GGML_ASSERT(k->ne[2] == n_tokens);
|
|
|
|
|
- GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
|
|
|
|
- GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
|
|
|
|
-
|
|
|
|
|
- const float eps_norm = hparams.f_norm_rms_eps;
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_l2_norm(ctx0, q, eps_norm);
|
|
|
|
|
- k = ggml_l2_norm(ctx0, k, eps_norm);
|
|
|
|
|
-
|
|
|
|
|
- const float scale = 1.0f / sqrtf(S_v);
|
|
|
|
|
-
|
|
|
|
|
- q = ggml_scale(ctx0, q, scale);
|
|
|
|
|
- beta = ggml_sigmoid(ctx0, beta);
|
|
|
|
|
-
|
|
|
|
|
- cb(q, "q_in", il);
|
|
|
|
|
- cb(k, "k_in", il);
|
|
|
|
|
- cb(v, "v_in", il);
|
|
|
|
|
- cb(beta, "beta_in", il);
|
|
|
|
|
- cb(g, "g_in", il);
|
|
|
|
|
-
|
|
|
|
|
- state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
|
|
|
|
|
- ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- // Apply exponential to g_t
|
|
|
|
|
- g_t = ggml_exp(ctx0, g_t);
|
|
|
|
|
-
|
|
|
|
|
- // Apply the gated delta rule for the single timestep
|
|
|
|
|
- // last_recurrent_state = last_recurrent_state * g_t
|
|
|
|
|
- state = ggml_mul(ctx0, state, g_t);
|
|
|
|
|
-
|
|
|
|
|
- // kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
|
|
|
|
|
- ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
|
|
|
|
|
- ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed);
|
|
|
|
|
- // we need to sum over dim=-2, so we transpose, sum, then transpose again
|
|
|
|
|
- kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
|
|
|
|
|
-
|
|
|
|
|
- // v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
|
|
|
|
|
- ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
|
|
|
|
|
- // delta = (v_t - kv_mem) * beta_t
|
|
|
|
|
- ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs]
|
|
|
|
|
- ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t);
|
|
|
|
|
-
|
|
|
|
|
- // last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
|
|
|
|
|
- ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
|
|
|
|
|
- state = ggml_add(ctx0, state, k_t_delta);
|
|
|
|
|
-
|
|
|
|
|
- // Compute the attention output
|
|
|
|
|
- // core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
|
|
|
|
|
- ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t
|
|
|
|
|
- ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed);
|
|
|
|
|
- // again, since it's over dim = -2, transpose, sum, transpose back
|
|
|
|
|
- ggml_tensor * core_attn_out =
|
|
|
|
|
- ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
|
|
|
|
|
-
|
|
|
|
|
- // core_attn_out should be [S_v, 1, H_v, n_seqs] after this
|
|
|
|
|
- cb(core_attn_out, "output_tokens", il);
|
|
|
|
|
- cb(state, "new_state", il);
|
|
|
|
|
-
|
|
|
|
|
- // flatten output, no need to permute since n_tokens is 1 so [S_v, 1, H_v, n_seqs] and [S_v, H_v, 1, n_seqs] are equivalent memory-layout wise
|
|
|
|
|
- ggml_tensor * flat_output = ggml_reshape_1d(ctx0, core_attn_out, S_v * H_v * n_tokens * n_seqs);
|
|
|
|
|
- ggml_tensor * flat_state = ggml_reshape_1d(ctx0, state, S_v * S_v * H_v * n_seqs);
|
|
|
|
|
-
|
|
|
|
|
- return ggml_concat(ctx0, flat_output, flat_state, 0);
|
|
|
|
|
-}
|
|
|
|
|
|
|
|
|
|
ggml_tensor * llm_build_qwen3next::build_norm_gated(
|
|
ggml_tensor * llm_build_qwen3next::build_norm_gated(
|
|
|
ggml_tensor * input,
|
|
ggml_tensor * input,
|
|
@@ -526,9 +176,6 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn(
|
|
|
ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
|
llm_graph_input_rs * inp,
|
|
llm_graph_input_rs * inp,
|
|
|
ggml_tensor * cur,
|
|
ggml_tensor * cur,
|
|
|
- ggml_tensor * causal_mask,
|
|
|
|
|
- ggml_tensor * identity,
|
|
|
|
|
- ggml_tensor * diag_mask,
|
|
|
|
|
int il) {
|
|
int il) {
|
|
|
const auto * mctx_cur = inp->mctx;
|
|
const auto * mctx_cur = inp->mctx;
|
|
|
|
|
|
|
@@ -645,9 +292,6 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
|
qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
|
|
qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
|
|
|
cb(qkv_mixed, "qkv_mixed_permuted", il);
|
|
cb(qkv_mixed, "qkv_mixed_permuted", il);
|
|
|
|
|
|
|
|
- // Calculate the total conv dimension
|
|
|
|
|
- int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads;
|
|
|
|
|
-
|
|
|
|
|
// Calculate convolution kernel size
|
|
// Calculate convolution kernel size
|
|
|
ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d;
|
|
ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d;
|
|
|
const int64_t conv_kernel_size = conv_kernel->ne[0];
|
|
const int64_t conv_kernel_size = conv_kernel->ne[0];
|
|
@@ -674,37 +318,33 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
|
cb(conv_states_all, "conv_states_updated", il);
|
|
cb(conv_states_all, "conv_states_updated", il);
|
|
|
|
|
|
|
|
// Apply SSM convolution
|
|
// Apply SSM convolution
|
|
|
- ggml_tensor * conv_output_proper = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
|
|
|
|
|
- cb(conv_output_proper, "conv_output_raw", il);
|
|
|
|
|
|
|
+ ggml_tensor * conv_output = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
|
|
|
|
|
+ cb(conv_output, "conv_output_raw", il);
|
|
|
|
|
|
|
|
- conv_output_proper = ggml_cont(ctx0, ggml_transpose(ctx0, conv_output_proper));
|
|
|
|
|
- cb(conv_output_proper, "conv_output_pre_silu", il);
|
|
|
|
|
-
|
|
|
|
|
- ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper);
|
|
|
|
|
|
|
+ ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output);
|
|
|
cb(conv_output_silu, "conv_output_silu", il);
|
|
cb(conv_output_silu, "conv_output_silu", il);
|
|
|
|
|
|
|
|
- ggml_tensor * conv_qkv_mix =
|
|
|
|
|
- ggml_cont_2d(ctx0, ggml_transpose(ctx0, conv_output_silu), qkv_dim, n_seq_tokens * n_seqs);
|
|
|
|
|
- cb(conv_qkv_mix, "conv_qkv_mix", il);
|
|
|
|
|
|
|
+ const size_t qkv_stride_t = conv_output_silu->nb[1];
|
|
|
|
|
+ const size_t qkv_stride_b = conv_output_silu->nb[2];
|
|
|
|
|
+ const size_t q_stride_h = head_k_dim * ggml_element_size(conv_output_silu);
|
|
|
|
|
+ const size_t v_stride_h = head_v_dim * ggml_element_size(conv_output_silu);
|
|
|
|
|
+ const size_t k_offset = head_k_dim * num_k_heads * ggml_element_size(conv_output_silu);
|
|
|
|
|
+ const size_t v_offset = 2 * head_k_dim * num_k_heads * ggml_element_size(conv_output_silu);
|
|
|
|
|
|
|
|
- // Extract the convolved Q, K, V from conv_output
|
|
|
|
|
|
|
+ // Extract the convolved Q, K, V directly as strided views (avoid extra copies).
|
|
|
ggml_tensor * q_conv =
|
|
ggml_tensor * q_conv =
|
|
|
- ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1], 0);
|
|
|
|
|
|
|
+ ggml_view_4d(ctx0, conv_output_silu, head_k_dim, num_k_heads, n_seq_tokens, n_seqs,
|
|
|
|
|
+ q_stride_h, qkv_stride_t, qkv_stride_b, 0);
|
|
|
cb(q_conv, "q_conv", il);
|
|
cb(q_conv, "q_conv", il);
|
|
|
ggml_tensor * k_conv =
|
|
ggml_tensor * k_conv =
|
|
|
- ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1],
|
|
|
|
|
- head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
|
|
|
|
|
|
+ ggml_view_4d(ctx0, conv_output_silu, head_k_dim, num_k_heads, n_seq_tokens, n_seqs,
|
|
|
|
|
+ q_stride_h, qkv_stride_t, qkv_stride_b, k_offset);
|
|
|
cb(k_conv, "k_conv", il);
|
|
cb(k_conv, "k_conv", il);
|
|
|
ggml_tensor * v_conv =
|
|
ggml_tensor * v_conv =
|
|
|
- ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1],
|
|
|
|
|
- 2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
|
|
|
|
|
|
+ ggml_view_4d(ctx0, conv_output_silu, head_v_dim, num_v_heads, n_seq_tokens, n_seqs,
|
|
|
|
|
+ v_stride_h, qkv_stride_t, qkv_stride_b, v_offset);
|
|
|
cb(v_conv, "v_conv", il);
|
|
cb(v_conv, "v_conv", il);
|
|
|
|
|
|
|
|
- // Unsqueeze them
|
|
|
|
|
- q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
|
|
|
- k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
|
|
|
- v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
|
|
|
|
-
|
|
|
|
|
beta = ggml_cont_4d(ctx0, b, num_v_heads, 1, n_seq_tokens, n_seqs);
|
|
beta = ggml_cont_4d(ctx0, b, num_v_heads, 1, n_seq_tokens, n_seqs);
|
|
|
|
|
|
|
|
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
|
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
|
@@ -716,6 +356,9 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
|
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
|
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
|
|
int64_t repeat_factor = num_v_heads / num_k_heads;
|
|
int64_t repeat_factor = num_v_heads / num_k_heads;
|
|
|
|
|
|
|
|
|
|
+ q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
|
|
|
+ k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
|
|
|
+
|
|
|
// repeat interleave: reshape to (repeat part, 1, remaining part), do repeat, then reshape back
|
|
// repeat interleave: reshape to (repeat part, 1, remaining part), do repeat, then reshape back
|
|
|
ggml_tensor * q_reshaped = ggml_reshape_3d(ctx0, q_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
|
ggml_tensor * q_reshaped = ggml_reshape_3d(ctx0, q_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
|
|
ggml_tensor * k_reshaped = ggml_reshape_3d(ctx0, k_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
|
ggml_tensor * k_reshaped = ggml_reshape_3d(ctx0, k_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
|
@@ -737,13 +380,15 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
|
cb(k_conv, "k_conv_predelta", il);
|
|
cb(k_conv, "k_conv_predelta", il);
|
|
|
cb(v_conv, "v_conv_predelta", il);
|
|
cb(v_conv, "v_conv_predelta", il);
|
|
|
|
|
|
|
|
- // Choose between build_delta_net_chunking, build_delta_net_recurrent, and build_delta_net_autoregressive based on n_tokens
|
|
|
|
|
- ggml_tensor * attn_out;
|
|
|
|
|
- if (n_seq_tokens == 1) {
|
|
|
|
|
- attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
|
|
|
|
|
- } else {
|
|
|
|
|
- attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
|
|
|
|
|
- }
|
|
|
|
|
|
|
+ // Fused gated delta rule (handles both prefill and decode)
|
|
|
|
|
+ const float q_scale = 1.0f / sqrtf((float) head_v_dim);
|
|
|
|
|
+ const float eps_norm = hparams.f_norm_rms_eps;
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * beta_3d = ggml_reshape_3d(ctx0, beta, num_v_heads, n_seq_tokens, n_seqs);
|
|
|
|
|
+ ggml_tensor * state_4d = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim, num_v_heads, n_seqs);
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * attn_out = ggml_gated_delta_rule(ctx0, q_conv, k_conv, v_conv, gate, beta_3d, state_4d, q_scale, eps_norm);
|
|
|
cb(attn_out, "attn_out", il);
|
|
cb(attn_out, "attn_out", il);
|
|
|
|
|
|
|
|
// The tensors were concatenated 1d, so we need to extract them 1d as well
|
|
// The tensors were concatenated 1d, so we need to extract them 1d as well
|