|
|
@@ -16,7 +16,7 @@
|
|
|
# At the start of the ggml file we write the model parameters
|
|
|
# and vocabulary.
|
|
|
#
|
|
|
-import os
|
|
|
+import argparse
|
|
|
import sys
|
|
|
import json
|
|
|
import struct
|
|
|
@@ -24,137 +24,91 @@ import numpy as np
|
|
|
import torch
|
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
|
|
-if len(sys.argv) < 3:
|
|
|
- print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
|
|
- print(" ftype == 0 -> float32")
|
|
|
- print(" ftype == 1 -> float16")
|
|
|
- sys.exit(1)
|
|
|
+def parse_args():
|
|
|
|
|
|
-# output in the same directory as the model
|
|
|
-dir_model = sys.argv[1]
|
|
|
-
|
|
|
-fname_hparams = sys.argv[1] + "/params.json"
|
|
|
-fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
|
|
+ parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
|
|
+ parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
|
|
+ parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
|
|
|
+ return parser.parse_args()
|
|
|
|
|
|
def get_n_parts(dim):
|
|
|
- if dim == 4096:
|
|
|
- return 1
|
|
|
- elif dim == 5120:
|
|
|
- return 2
|
|
|
- elif dim == 6656:
|
|
|
- return 4
|
|
|
- elif dim == 8192:
|
|
|
- return 8
|
|
|
- else:
|
|
|
- print("Invalid dim: " + str(dim))
|
|
|
+
|
|
|
+ mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
|
|
+ n_parts = mappings.get(dim)
|
|
|
+ if n_parts is None:
|
|
|
+ print(f"Invalid dim: {dim}")
|
|
|
sys.exit(1)
|
|
|
|
|
|
-# possible data types
|
|
|
-# ftype == 0 -> float32
|
|
|
-# ftype == 1 -> float16
|
|
|
-#
|
|
|
-# map from ftype to string
|
|
|
-ftype_str = ["f32", "f16"]
|
|
|
-
|
|
|
-ftype = 1
|
|
|
-if len(sys.argv) > 2:
|
|
|
- ftype = int(sys.argv[2])
|
|
|
- if ftype < 0 or ftype > 1:
|
|
|
- print("Invalid ftype: " + str(ftype))
|
|
|
- sys.exit(1)
|
|
|
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
-
|
|
|
-if os.path.exists(fname_out):
|
|
|
- print(f"Skip conversion, it already exists: {fname_out}")
|
|
|
- sys.exit(0)
|
|
|
-
|
|
|
-with open(fname_hparams, "r") as f:
|
|
|
- hparams = json.load(f)
|
|
|
+ print(f"n_parts = {n_parts}\n")
|
|
|
+ return n_parts
|
|
|
|
|
|
-tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|
|
+def load_hparams_and_tokenizer(dir_model):
|
|
|
+
|
|
|
+ fname_hparams = f"{dir_model}/params.json"
|
|
|
+ fname_tokenizer = f"{dir_model}/../tokenizer.model"
|
|
|
|
|
|
-hparams.update({"vocab_size": tokenizer.vocab_size()})
|
|
|
+ with open(fname_hparams, "r") as f:
|
|
|
+ hparams = json.load(f)
|
|
|
+ print(hparams)
|
|
|
|
|
|
-n_parts = get_n_parts(hparams["dim"])
|
|
|
+ tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|
|
+ hparams.update({"vocab_size": tokenizer.vocab_size()})
|
|
|
|
|
|
-print(hparams)
|
|
|
-print('n_parts = ', n_parts)
|
|
|
+ return hparams, tokenizer
|
|
|
|
|
|
-for p in range(n_parts):
|
|
|
- print('Processing part ', p)
|
|
|
+def write_header(fout, hparams, ftype):
|
|
|
+
|
|
|
+ keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
|
|
+ values = [
|
|
|
+ 0x67676d6c, # magic: ggml in hex
|
|
|
+ *[hparams[key] for key in keys],
|
|
|
+ hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
|
|
+ ftype
|
|
|
+ ]
|
|
|
+ fout.write(struct.pack("i" * len(values), *values))
|
|
|
|
|
|
- #fname_model = sys.argv[1] + "/consolidated.00.pth"
|
|
|
- fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
|
|
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
- if (p > 0):
|
|
|
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
|
|
+def write_tokens(fout, tokenizer):
|
|
|
|
|
|
- model = torch.load(fname_model, map_location="cpu")
|
|
|
-
|
|
|
- fout = open(fname_out, "wb")
|
|
|
-
|
|
|
- fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
|
- fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
|
- fout.write(struct.pack("i", hparams["dim"]))
|
|
|
- fout.write(struct.pack("i", hparams["multiple_of"]))
|
|
|
- fout.write(struct.pack("i", hparams["n_heads"]))
|
|
|
- fout.write(struct.pack("i", hparams["n_layers"]))
|
|
|
- fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
|
|
- fout.write(struct.pack("i", ftype))
|
|
|
-
|
|
|
- # Is this correct??
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
|
if tokenizer.is_unknown(i):
|
|
|
- # "<unk>" token (translated as ??)
|
|
|
text = " \u2047 ".encode("utf-8")
|
|
|
- fout.write(struct.pack("i", len(text)))
|
|
|
- fout.write(text)
|
|
|
elif tokenizer.is_control(i):
|
|
|
- # "<s>"/"</s>" tokens
|
|
|
- fout.write(struct.pack("i", 0))
|
|
|
+ text = b""
|
|
|
elif tokenizer.is_byte(i):
|
|
|
- # "<U+XX>" tokens (which may be invalid UTF-8)
|
|
|
piece = tokenizer.id_to_piece(i)
|
|
|
if len(piece) != 6:
|
|
|
- print("Invalid token: " + piece)
|
|
|
+ print(f"Invalid token: {piece}")
|
|
|
sys.exit(1)
|
|
|
byte_value = int(piece[3:-1], 16)
|
|
|
- fout.write(struct.pack("i", 1))
|
|
|
- fout.write(struct.pack("B", byte_value))
|
|
|
+ text = struct.pack("B", byte_value)
|
|
|
else:
|
|
|
- # normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
|
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
|
|
- fout.write(struct.pack("i", len(text)))
|
|
|
- fout.write(text)
|
|
|
+ fout.write(struct.pack("i", len(text)))
|
|
|
+ fout.write(text)
|
|
|
|
|
|
- for k, v in model.items():
|
|
|
- name = k
|
|
|
- shape = v.shape
|
|
|
+def process_and_write_variables(fout, model, ftype):
|
|
|
|
|
|
- # skip layers.X.attention.inner_attention.rope.freqs
|
|
|
- if name[-5:] == "freqs":
|
|
|
+ for name, data in model.items():
|
|
|
+
|
|
|
+ if name.endswith("freqs"):
|
|
|
continue
|
|
|
-
|
|
|
- print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
|
|
-
|
|
|
- #data = tf.train.load_variable(dir_model, name).squeeze()
|
|
|
- data = v.numpy().squeeze()
|
|
|
- n_dims = len(data.shape);
|
|
|
+
|
|
|
+ shape = data.shape
|
|
|
+
|
|
|
+ print(f"Processing variable: {name} with shape: {shape} and type: {data.dtype}\n")
|
|
|
+
|
|
|
+ data = np.squeeze(data)
|
|
|
+ n_dims = len(shape)
|
|
|
|
|
|
# for efficiency - transpose some matrices
|
|
|
# "model/h.*/attn/c_attn/w"
|
|
|
# "model/h.*/attn/c_proj/w"
|
|
|
# "model/h.*/mlp/c_fc/w"
|
|
|
# "model/h.*/mlp/c_proj/w"
|
|
|
- #if name[-14:] == "/attn/c_attn/w" or \
|
|
|
- # name[-14:] == "/attn/c_proj/w" or \
|
|
|
- # name[-11:] == "/mlp/c_fc/w" or \
|
|
|
- # name[-13:] == "/mlp/c_proj/w":
|
|
|
- # print(" Transposing")
|
|
|
+ #if name.endswith(("/attn/c_attn/w", "/attn/c_proj/w", "/mlp/c_fc/w", "/mlp/c_proj/w")):
|
|
|
+ # print("Transposing")
|
|
|
# data = data.transpose()
|
|
|
|
|
|
- dshape = data.shape
|
|
|
-
|
|
|
# default type is fp16
|
|
|
ftype_cur = 1
|
|
|
if ftype == 0 or n_dims == 1:
|
|
|
@@ -164,18 +118,40 @@ for p in range(n_parts):
|
|
|
|
|
|
# header
|
|
|
sname = name.encode('utf-8')
|
|
|
- fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
|
|
- for i in range(n_dims):
|
|
|
- fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
|
|
- fout.write(sname);
|
|
|
-
|
|
|
+ fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
|
|
|
+ for dim in reversed(data.shape):
|
|
|
+ fout.write(struct.pack("i", dim))
|
|
|
+ fout.write(sname)
|
|
|
+
|
|
|
# data
|
|
|
data.tofile(fout)
|
|
|
|
|
|
- # I hope this deallocates the memory ..
|
|
|
- model = None
|
|
|
+def main():
|
|
|
+
|
|
|
+ args = parse_args()
|
|
|
+ dir_model = args.dir_model
|
|
|
+ ftype = args.ftype
|
|
|
+ ftype_str = ["f32", "f16"]
|
|
|
+
|
|
|
+ hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
|
|
+ n_parts = get_n_parts(hparams["dim"])
|
|
|
+
|
|
|
+ for p in range(n_parts):
|
|
|
+
|
|
|
+ print(f"Processing part {p}\n")
|
|
|
+
|
|
|
+ fname_model = f"{dir_model}/consolidated.0{p}.pth"
|
|
|
+ fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
|
|
|
+
|
|
|
+ model = torch.load(fname_model, map_location="cpu")
|
|
|
+
|
|
|
+ with open(fname_out, "wb") as fout:
|
|
|
+ write_header(fout, hparams, ftype)
|
|
|
+ write_tokens(fout, tokenizer)
|
|
|
+ process_and_write_variables(fout, model, ftype)
|
|
|
|
|
|
- fout.close()
|
|
|
+ del model
|
|
|
+ print(f"Done. Output file: {fname_out}, (part {p})\n")
|
|
|
|
|
|
- print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
|
|
- print("")
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|