|
|
@@ -136,7 +136,7 @@ def find_n_mult(n_ff: int, n_embd: int) -> int:
|
|
|
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
|
|
if calc_ff == n_ff:
|
|
|
return n_mult
|
|
|
- return 1
|
|
|
+ raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
|
|
|
|
|
@dataclass
|
|
|
class Params:
|
|
|
@@ -321,6 +321,10 @@ class Tensor(metaclass=ABCMeta):
|
|
|
@abstractmethod
|
|
|
def permute(self, n_head: int) -> 'Tensor': ...
|
|
|
@abstractmethod
|
|
|
+ def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
|
|
|
+ @abstractmethod
|
|
|
+ def part(self, n_part: int) -> 'UnquantizedTensor': ...
|
|
|
+ @abstractmethod
|
|
|
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
|
|
|
|
|
|
|
|
|
@@ -345,6 +349,14 @@ class UnquantizedTensor(Tensor):
|
|
|
def to_ggml(self) -> 'UnquantizedTensor':
|
|
|
return self
|
|
|
|
|
|
+ def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
|
|
+ r = self.ndarray.shape[0] // 3
|
|
|
+ return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
|
|
|
+
|
|
|
+ def part(self, n_part: int) -> 'UnquantizedTensor':
|
|
|
+ r = self.ndarray.shape[0] // 3
|
|
|
+ return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
|
|
|
+
|
|
|
def permute(self, n_head: int) -> 'UnquantizedTensor':
|
|
|
return UnquantizedTensor(permute(self.ndarray, n_head))
|
|
|
|
|
|
@@ -642,6 +654,19 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
|
|
|
return lazy_tensor.load().permute(n_head)
|
|
|
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
|
|
|
|
|
+def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
|
|
|
+ def load() -> Tensor:
|
|
|
+ return lazy_tensor.load().permute_part(n_part, n_head)
|
|
|
+ s = lazy_tensor.shape.copy()
|
|
|
+ s[0] = s[0] // 3
|
|
|
+ return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
|
|
+
|
|
|
+def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
|
|
+ def load() -> Tensor:
|
|
|
+ return lazy_tensor.load().part(n_part)
|
|
|
+ s = lazy_tensor.shape.copy()
|
|
|
+ s[0] = s[0] // 3
|
|
|
+ return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
|
|
|
|
|
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
|
|
|
out: LazyModel = {}
|
|
|
@@ -650,11 +675,17 @@ def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
|
|
|
out["output.weight"] = model["lm_head.weight"]
|
|
|
|
|
|
for i in itertools.count():
|
|
|
- if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
|
|
|
+ if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
|
|
+ out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
|
|
|
+ out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
|
|
|
+ out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
|
|
+ elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
|
|
+ out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
|
|
|
+ out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head)
|
|
|
+ out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
|
|
+ else:
|
|
|
break
|
|
|
- out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
|
|
|
- out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
|
|
|
- out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
|
|
+
|
|
|
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
|
|
|
|
|
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
|