|
|
@@ -195,6 +195,7 @@ enum llm_arch {
|
|
|
LLM_ARCH_LLAMA,
|
|
|
LLM_ARCH_FALCON,
|
|
|
LLM_ARCH_BAICHUAN,
|
|
|
+ LLM_ARCH_GROK,
|
|
|
LLM_ARCH_GPT2,
|
|
|
LLM_ARCH_GPTJ,
|
|
|
LLM_ARCH_GPTNEOX,
|
|
|
@@ -224,6 +225,7 @@ enum llm_arch {
|
|
|
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_LLAMA, "llama" },
|
|
|
{ LLM_ARCH_FALCON, "falcon" },
|
|
|
+ { LLM_ARCH_GROK, "grok" },
|
|
|
{ LLM_ARCH_GPT2, "gpt2" },
|
|
|
{ LLM_ARCH_GPTJ, "gptj" },
|
|
|
{ LLM_ARCH_GPTNEOX, "gptneox" },
|
|
|
@@ -494,6 +496,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
},
|
|
|
},
|
|
|
+ {
|
|
|
+ LLM_ARCH_GROK,
|
|
|
+ {
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
|
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
|
|
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
|
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
|
|
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
|
|
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
|
|
+ { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
|
|
+ },
|
|
|
+ },
|
|
|
{
|
|
|
LLM_ARCH_GPT2,
|
|
|
{
|
|
|
@@ -1635,6 +1659,7 @@ enum e_model {
|
|
|
MODEL_40B,
|
|
|
MODEL_65B,
|
|
|
MODEL_70B,
|
|
|
+ MODEL_314B,
|
|
|
MODEL_SMALL,
|
|
|
MODEL_MEDIUM,
|
|
|
MODEL_LARGE,
|
|
|
@@ -3419,6 +3444,7 @@ static const char * llama_model_type_name(e_model type) {
|
|
|
case MODEL_40B: return "40B";
|
|
|
case MODEL_65B: return "65B";
|
|
|
case MODEL_70B: return "70B";
|
|
|
+ case MODEL_314B: return "314B";
|
|
|
case MODEL_SMALL: return "0.1B";
|
|
|
case MODEL_MEDIUM: return "0.4B";
|
|
|
case MODEL_LARGE: return "0.8B";
|
|
|
@@ -3557,6 +3583,15 @@ static void llm_load_hparams(
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_GROK:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 64: model.type = e_model::MODEL_314B; break;
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_FALCON:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
|
@@ -4394,6 +4429,54 @@ static bool llm_load_tensors(
|
|
|
}
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_GROK:
|
|
|
+ {
|
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
+
|
|
|
+ // output
|
|
|
+ {
|
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
|
|
|
+ // if output is NULL, init from the input tok embed
|
|
|
+ if (model.output == NULL) {
|
|
|
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
+ ml.n_created--; // artificial tensor
|
|
|
+ ml.size_data += ggml_nbytes(model.output);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
|
+
|
|
|
+ auto & layer = model.layers[i];
|
|
|
+
|
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
|
+
|
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
|
|
+
|
|
|
+ layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
|
|
|
+
|
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
|
+
|
|
|
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd});
|
|
|
+
|
|
|
+ GGML_ASSERT(hparams.n_expert > 0);
|
|
|
+ GGML_ASSERT(hparams.n_expert_used > 0);
|
|
|
+
|
|
|
+ // MoE branch
|
|
|
+ for (uint32_t x = 0; x < hparams.n_expert; ++x) {
|
|
|
+ layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
|
|
|
+ layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
|
|
|
+ layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
|
|
|
+ }
|
|
|
+
|
|
|
+ layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_BAICHUAN:
|
|
|
{
|
|
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
@@ -5621,6 +5704,20 @@ static struct ggml_tensor * llm_build_kqv(
|
|
|
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
|
|
}
|
|
|
|
|
|
+ if (model.arch == LLM_ARCH_GROK) {
|
|
|
+ // need to do the following:
|
|
|
+ // multiply by attn_output_multiplyer of 0.08838834764831845
|
|
|
+ // and then :
|
|
|
+ // kq = 30 * tanh(kq / 30)
|
|
|
+ // before the softmax below
|
|
|
+
|
|
|
+ //try from phi2
|
|
|
+ //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
|
|
+
|
|
|
+ kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
|
|
|
+ kq = ggml_scale(ctx, kq, 30);
|
|
|
+ }
|
|
|
+
|
|
|
#if defined(GGML_USE_KOMPUTE)
|
|
|
#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
|
|
|
#pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
|
|
|
@@ -6395,6 +6492,203 @@ struct llm_build_context {
|
|
|
return gf;
|
|
|
}
|
|
|
|
|
|
+ struct ggml_cgraph * build_grok() {
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ struct ggml_tensor * cur;
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
|
+
|
|
|
+ // multiply by embedding_multiplier_scale of 78.38367176906169
|
|
|
+ inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+
|
|
|
+ // self-attention
|
|
|
+ {
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ if (model.layers[il].bq) {
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ if (model.layers[il].bk) {
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ if (model.layers[il].bv) {
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ Qcur = ggml_rope_custom(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ Kcur = ggml_rope_custom(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Grok
|
|
|
+ // if attn_out_norm is present then apply it before adding the input
|
|
|
+ if (model.layers[il].attn_out_norm) {
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.layers[il].attn_out_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "attn_out_norm", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ // MoE branch
|
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
|
|
+ cb(logits, "ffn_moe_logits", il);
|
|
|
+
|
|
|
+ ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
|
|
+ cb(probs, "ffn_moe_probs", il);
|
|
|
+
|
|
|
+ // select experts
|
|
|
+ ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
|
|
+ cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
|
|
+
|
|
|
+ ggml_tensor * weights = ggml_get_rows(ctx0,
|
|
|
+ ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
|
|
+ cb(weights, "ffn_moe_weights", il);
|
|
|
+
|
|
|
+ weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
|
|
+
|
|
|
+ ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
|
|
+ cb(weights_sum, "ffn_moe_weights_sum", il);
|
|
|
+
|
|
|
+ weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
|
|
+ cb(weights, "ffn_moe_weights_norm", il);
|
|
|
+
|
|
|
+ // compute expert outputs
|
|
|
+ ggml_tensor * moe_out = nullptr;
|
|
|
+
|
|
|
+ for (int i = 0; i < n_expert_used; ++i) {
|
|
|
+ ggml_tensor * cur_expert;
|
|
|
+
|
|
|
+ ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
|
|
|
+ cb(cur_up, "ffn_moe_up", il);
|
|
|
+
|
|
|
+ ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
|
|
|
+ cb(cur_gate, "ffn_moe_gate", il);
|
|
|
+
|
|
|
+ //GeLU
|
|
|
+ cur_gate = ggml_gelu(ctx0, cur_gate);
|
|
|
+ cb(cur_gate, "ffn_moe_gelu", il);
|
|
|
+
|
|
|
+ cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
|
|
|
+ cb(cur_expert, "ffn_moe_gate_par", il);
|
|
|
+
|
|
|
+ cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
|
|
+ cb(cur_expert, "ffn_moe_down", il);
|
|
|
+
|
|
|
+ cur_expert = ggml_mul(ctx0, cur_expert,
|
|
|
+ ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
|
|
+ cb(cur_expert, "ffn_moe_weighted", il);
|
|
|
+
|
|
|
+ if (i == 0) {
|
|
|
+ moe_out = cur_expert;
|
|
|
+ } else {
|
|
|
+ moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
|
|
+ cb(moe_out, "ffn_moe_out", il);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = moe_out;
|
|
|
+
|
|
|
+ // Grok
|
|
|
+ // if layer_out_norm is present then apply it before adding the input
|
|
|
+ // Idea: maybe ffn_out_norm is a better name
|
|
|
+ if (model.layers[il].layer_out_norm) {
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.layers[il].layer_out_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "layer_out_norm", il);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
|
|
+ if (layer_dir != nullptr) {
|
|
|
+ cur = ggml_add(ctx0, cur, layer_dir);
|
|
|
+ }
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
|
|
+
|
|
|
+ // Grok
|
|
|
+ // multiply logits by output_multiplier_scale of 0.5773502691896257
|
|
|
+
|
|
|
+ cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+
|
|
|
+ return gf;
|
|
|
+ }
|
|
|
+
|
|
|
struct ggml_cgraph * build_starcoder() {
|
|
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
|
|
|
@@ -8818,6 +9112,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
|
result = llm.build_falcon();
|
|
|
} break;
|
|
|
+ case LLM_ARCH_GROK:
|
|
|
+ {
|
|
|
+ result = llm.build_grok();
|
|
|
+ } break;
|
|
|
case LLM_ARCH_STARCODER:
|
|
|
{
|
|
|
result = llm.build_starcoder();
|
|
|
@@ -13561,6 +13859,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
|
|
|
// the pairs of head values are offset by n_rot/2
|
|
|
case LLM_ARCH_FALCON:
|
|
|
+ case LLM_ARCH_GROK:
|
|
|
case LLM_ARCH_PERSIMMON:
|
|
|
case LLM_ARCH_BERT:
|
|
|
case LLM_ARCH_NOMIC_BERT:
|