|
|
@@ -1,35 +1,36 @@
|
|
|
#include "upscale.cuh"
|
|
|
|
|
|
-static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
|
|
|
- // blockIdx.z: idx of ne02*ne03
|
|
|
- // blockIdx.y: idx of ne01*scale_factor, aka ne1
|
|
|
- // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
|
|
|
- // ne00xne01: ne00 * ne01
|
|
|
- int ne0 = ne00 * scale_factor;
|
|
|
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
- if (nidx >= ne0) {
|
|
|
+static __global__ void upscale_f32(const float * x, float * dst,
|
|
|
+ const int nb00, const int nb01, const int nb02, const int nb03,
|
|
|
+ const int ne10, const int ne11, const int ne12, const int ne13,
|
|
|
+ const float sf0, const float sf1, const float sf2, const float sf3) {
|
|
|
+ int index = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
+ if (index >= ne10 * ne11 * ne12 * ne13) {
|
|
|
return;
|
|
|
}
|
|
|
- // operation
|
|
|
- int i00 = nidx / scale_factor;
|
|
|
- int i01 = blockIdx.y / scale_factor;
|
|
|
- int offset_src =
|
|
|
- i00 +
|
|
|
- i01 * ne00 +
|
|
|
- blockIdx.z * ne00xne01;
|
|
|
- int offset_dst =
|
|
|
- nidx +
|
|
|
- blockIdx.y * ne0 +
|
|
|
- blockIdx.z * ne0 * gridDim.y;
|
|
|
- dst[offset_dst] = x[offset_src];
|
|
|
+
|
|
|
+ int i10 = index % ne10;
|
|
|
+ int i11 = (index / ne10) % ne11;
|
|
|
+ int i12 = (index / (ne10 * ne11)) % ne12;
|
|
|
+ int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
|
|
+
|
|
|
+ int i00 = i10 / sf0;
|
|
|
+ int i01 = i11 / sf1;
|
|
|
+ int i02 = i12 / sf2;
|
|
|
+ int i03 = i13 / sf3;
|
|
|
+
|
|
|
+ dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
|
|
}
|
|
|
|
|
|
-static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
|
|
|
- const int scale_factor, cudaStream_t stream) {
|
|
|
- int ne0 = (ne00 * scale_factor);
|
|
|
- int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
|
|
- dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
|
|
|
- upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
|
|
|
+static void upscale_f32_cuda(const float * x, float * dst,
|
|
|
+ const int nb00, const int nb01, const int nb02, const int nb03,
|
|
|
+ const int ne10, const int ne11, const int ne12, const int ne13,
|
|
|
+ const float sf0, const float sf1, const float sf2, const float sf3,
|
|
|
+ cudaStream_t stream) {
|
|
|
+ int dst_size = ne10 * ne11 * ne12 * ne13;
|
|
|
+ int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
|
|
+
|
|
|
+ upscale_f32<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3);
|
|
|
}
|
|
|
|
|
|
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
@@ -39,10 +40,12 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
|
|
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
- const int scale_factor = dst->op_params[0];
|
|
|
+ const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
|
|
+ const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
|
|
+ const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
|
|
+ const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
|
|
|
|
|
- upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
|
|
|
+ upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
|
|
|
}
|