|
|
@@ -19,6 +19,7 @@
|
|
|
|
|
|
struct Stats {
|
|
|
std::vector<float> values;
|
|
|
+ std::vector<int> counts;
|
|
|
int ncall = 0;
|
|
|
};
|
|
|
|
|
|
@@ -121,12 +122,10 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
auto & e = m_stats[wname];
|
|
|
|
|
|
++e.ncall;
|
|
|
- // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
|
|
- // using the following line, we can correct for that if needed by replacing the line above with:
|
|
|
- //if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
|
|
|
|
|
if (e.values.empty()) {
|
|
|
e.values.resize(src1->ne[0]*n_as, 0);
|
|
|
+ e.counts.resize(src1->ne[0]*n_as, 0);
|
|
|
}
|
|
|
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
|
|
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
|
|
@@ -153,6 +152,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
|
|
|
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
|
|
e.values[e_start + j] += x[j]*x[j];
|
|
|
+ e.counts[e_start + j]++;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
@@ -170,6 +170,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
auto& e = m_stats[wname];
|
|
|
if (e.values.empty()) {
|
|
|
e.values.resize(src1->ne[0], 0);
|
|
|
+ e.counts.resize(src1->ne[0], 0);
|
|
|
}
|
|
|
else if (e.values.size() != (size_t)src1->ne[0]) {
|
|
|
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
|
|
@@ -183,6 +184,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
const float * x = data + row * src1->ne[0];
|
|
|
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
|
|
e.values[j] += x[j]*x[j];
|
|
|
+ e.counts[j]++;
|
|
|
}
|
|
|
}
|
|
|
if (e.ncall > m_last_call) {
|
|
|
@@ -222,7 +224,13 @@ void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) co
|
|
|
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
|
|
|
int nval = p.second.values.size();
|
|
|
out.write((const char *) &nval, sizeof(nval));
|
|
|
- if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
|
|
|
+ if (nval > 0) {
|
|
|
+ std::vector<float> tmp(nval);
|
|
|
+ for (int i = 0; i < nval; i++) {
|
|
|
+ tmp[i] = (p.second.values[i] / static_cast<float>(p.second.counts[i])) * static_cast<float>(p.second.ncall);
|
|
|
+ }
|
|
|
+ out.write((const char*)tmp.data(), nval*sizeof(float));
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
// Write the number of call the matrix was computed with
|
|
|
@@ -270,14 +278,28 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma
|
|
|
imatrix_data = {};
|
|
|
return false;
|
|
|
}
|
|
|
- e.values.resize(nval);
|
|
|
- in.read((char*)e.values.data(), nval*sizeof(float));
|
|
|
+
|
|
|
+ // When re-called from load_imatrix() with add set, this will already be created.
|
|
|
+ if (e.values.empty()) {
|
|
|
+ e.values.resize(nval, 0);
|
|
|
+ e.counts.resize(nval, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<float> tmp(nval);
|
|
|
+ in.read((char*)tmp.data(), nval*sizeof(float));
|
|
|
if (in.fail()) {
|
|
|
printf("%s: failed reading data for entry %d\n",__func__,i);
|
|
|
imatrix_data = {};
|
|
|
return false;
|
|
|
}
|
|
|
- e.ncall = ncall;
|
|
|
+
|
|
|
+ // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
|
|
|
+ for (int i = 0; i < nval; i++) {
|
|
|
+ e.values[i] += tmp[i];
|
|
|
+ e.counts[i] += ncall;
|
|
|
+ }
|
|
|
+ e.ncall += ncall;
|
|
|
+
|
|
|
}
|
|
|
return true;
|
|
|
}
|