Prechádzať zdrojové kódy

models : Added support for RND1 Diffusion Language Model (#17433)

* Converted RND1 model to GGUF weights

* RND1 llama.cpp support v1

* RND1 llama.cpp support v2 non causal bug

* RND1 llama.cpp support v3 doccumentation

* RND1 llama.cpp support v4 clean code

* linting issues

* RND1 pr fixes v1

* RND1 pr fixes v2

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Diffusion documentation edits

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
william pan 1 mesiac pred
rodič
commit
4902eebe33

+ 15 - 0
convert_hf_to_gguf.py

@@ -4183,6 +4183,21 @@ class Qwen3MoeModel(Qwen2MoeModel):
         super().set_vocab()
 
 
+@ModelBase.register("RND1")
+class RND1Model(Qwen2MoeModel):
+    model_arch = gguf.MODEL_ARCH.RND1
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+
+        # RND1 specific parameters
+        # RND1 uses bidirectional attention
+        self.gguf_writer.add_causal_attention(False)
+
+        if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
+            self.gguf_writer.add_mask_token_id(mask_token_id)
+
+
 @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
 class Qwen3VLVisionModel(MmprojModel):
     def __init__(self, *args, **kwargs):

+ 48 - 2
examples/diffusion/README.md

@@ -6,8 +6,54 @@ More Info:
 - https://github.com/ggml-org/llama.cpp/pull/14644
 - https://github.com/ggml-org/llama.cpp/pull/14771
 
+## Parameters
+The diffusion CLI supports various parameters to control the generation process:
 
-Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
+### Core Diffusion Parameters
+- `--diffusion-steps`: Number of diffusion steps (default: 256)
+- `--diffusion-algorithm`: Algorithm for token selection
+  - `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
+  - `1`: ENTROPY_BASED - Entropy-based selection
+  - `2`: MARGIN_BASED - Margin-based selection
+  - `3`: RANDOM - Random selection
+  - `4`: CONFIDENCE_BASED - Confidence-based selection (default)
+  - More documentation here https://github.com/DreamLM/Dream
+- `--diffusion-visual`: Enable live visualization during generation
 
-Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
+### Scheduling Parameters
+Choose one of the following scheduling methods:
 
+**Timestep-based scheduling:**
+- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
+
+**Block-based scheduling:**
+- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
+
+### Sampling Parameters
+- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
+- `--top-k`: Top-k filtering for sampling
+- `--top-p`: Top-p (nucleus) filtering for sampling
+- `--seed`: Random seed for reproducibility
+
+### Model Parameters
+- `-m`: Path to the GGUF model file
+- `-p`: Input prompt text
+- `-ub`: Maximum sequence length (ubatch size)
+- `-c`: Context size
+- `-b`: Batch size
+
+### Examples
+#### Dream architechture:
+```
+llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
+```
+
+#### LLaDA architechture:
+```
+llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
+```
+
+#### RND1 architecture:
+```
+llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
+```

+ 19 - 0
gguf-py/gguf/constants.py

@@ -427,6 +427,7 @@ class MODEL_ARCH(IntEnum):
     APERTUS          = auto()
     COGVLM           = auto()
     MINIMAXM2        = auto()
+    RND1             = auto()
     PANGU_EMBED      = auto()
 
 
@@ -797,6 +798,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.APERTUS:          "apertus",
     MODEL_ARCH.MINIMAXM2:        "minimax-m2",
     MODEL_ARCH.COGVLM:           "cogvlm",
+    MODEL_ARCH.RND1:             "rnd1",
     MODEL_ARCH.PANGU_EMBED:      "pangu-embedded",
 }
 
@@ -2991,6 +2993,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.VISEXP_UP,
         MODEL_TENSOR.VISEXP_DOWN,
     ],
+    MODEL_ARCH.RND1: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+    ],
     MODEL_ARCH.PANGU_EMBED: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,

+ 1 - 0
src/CMakeLists.txt

@@ -115,6 +115,7 @@ add_library(llama
             models/qwen3vl-moe.cpp
             models/qwen3moe.cpp
             models/refact.cpp
+            models/rnd1.cpp
             models/rwkv6-base.cpp
             models/rwkv6.cpp
             models/rwkv6qwen2.cpp

+ 22 - 0
src/llama-arch.cpp

@@ -108,6 +108,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_APERTUS,          "apertus"          },
     { LLM_ARCH_MINIMAX_M2,       "minimax-m2"       },
     { LLM_ARCH_COGVLM,           "cogvlm"           },
+    { LLM_ARCH_RND1,             "rnd1"             },
     { LLM_ARCH_PANGU_EMBED,      "pangu-embedded"   },
     { LLM_ARCH_UNKNOWN,          "(unknown)"        },
 };
@@ -2446,6 +2447,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_VISEXP_FFN_UP,   "blk.%d.vis_up" },
         },
     },
+    {
+        LLM_ARCH_RND1,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_Q_NORM,        "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_K_NORM,        "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -2722,6 +2743,7 @@ bool llm_arch_is_diffusion(const llm_arch & arch) {
         case LLM_ARCH_DREAM:
         case LLM_ARCH_LLADA:
         case LLM_ARCH_LLADA_MOE:
+        case LLM_ARCH_RND1:
             return true;
         default:
             return false;

+ 1 - 0
src/llama-arch.h

@@ -112,6 +112,7 @@ enum llm_arch {
     LLM_ARCH_APERTUS,
     LLM_ARCH_MINIMAX_M2,
     LLM_ARCH_COGVLM,
+    LLM_ARCH_RND1,
     LLM_ARCH_PANGU_EMBED,
     LLM_ARCH_UNKNOWN,
 };

+ 21 - 1
src/llama-model.cpp

@@ -1036,6 +1036,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_RND1:
+            {
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
+
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 48: type = LLM_TYPE_30B_A3B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+                // Set non-causal attention for diffusion models
+                hparams.causal_attn = false;
+            } break;
         case LLM_ARCH_QWEN2MOE:
             {
                 ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);
@@ -3402,6 +3414,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                 } break;
             case LLM_ARCH_QWEN3MOE:
             case LLM_ARCH_QWEN3VLMOE:
+            case LLM_ARCH_RND1:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
 
@@ -6720,7 +6733,7 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: n_ff_shexp       = %d\n",     __func__, hparams.n_ff_shexp);
     }
 
-    if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE) {
+    if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
         LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
     }
 
@@ -6882,6 +6895,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
         case LLM_ARCH_DREAM:
         case LLM_ARCH_LLADA:
         case LLM_ARCH_LLADA_MOE:
+        case LLM_ARCH_RND1:
             {
                 res = nullptr;
             } break;
@@ -7075,6 +7089,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
                 llm = std::make_unique<llm_build_llada_moe>(*this, params);
             }
             break;
+        case LLM_ARCH_RND1:
+            {
+                llm = std::make_unique<llm_build_rnd1>(*this, params);
+            }
+            break;
         case LLM_ARCH_QWEN2VL:
             {
                 llm = std::make_unique<llm_build_qwen2vl>(*this, params);
@@ -7595,6 +7614,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_QWEN3:
         case LLM_ARCH_QWEN3MOE:
         case LLM_ARCH_LLADA_MOE:
+        case LLM_ARCH_RND1:
         case LLM_ARCH_OLMO2:
         case LLM_ARCH_OLMOE:
         case LLM_ARCH_PHI2:

+ 4 - 0
src/models/models.h

@@ -431,6 +431,10 @@ struct llm_build_refact : public llm_graph_context {
     llm_build_refact(const llama_model & model, const llm_graph_params & params);
 };
 
+struct llm_build_rnd1 : public llm_graph_context {
+    llm_build_rnd1(const llama_model & model, const llm_graph_params & params);
+};
+
 struct llm_build_rwkv6 : public llm_build_rwkv6_base {
     llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
 };

+ 126 - 0
src/models/rnd1.cpp

@@ -0,0 +1,126 @@
+#include "models.h"
+
+// RND1 is a Qwen3Moe AR model converted to diffusion model.
+llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+    const int64_t n_embd_head = hparams.n_embd_head_v;
+
+    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+    GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+    ggml_tensor * cur;
+    ggml_tensor * inpL;
+
+    inpL = build_inp_embd(model.tok_embd);
+
+    // inp_pos - contains the positions
+    ggml_tensor * inp_pos = build_inp_pos();
+
+    // Non-causal attention for diffusion
+    auto * inp_attn = build_attn_inp_no_cache();
+
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+    for (int il = 0; il < n_layer; ++il) {
+        ggml_tensor * inpSA = inpL;
+
+        // norm
+        cur = build_norm(inpL,
+                model.layers[il].attn_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "attn_norm", il);
+
+        // self_attention
+        {
+            // compute Q and K and RoPE them
+            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+            cb(Qcur, "Qcur", il);
+
+            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+            cb(Kcur, "Kcur", il);
+
+            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+            cb(Vcur, "Vcur", il);
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+            cb(Qcur, "Qcur_normed", il);
+
+            Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                    );
+
+            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+            cb(Kcur, "Kcur_normed", il);
+
+            Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                    );
+
+            cb(Qcur, "Qcur", il);
+            cb(Kcur, "Kcur", il);
+            cb(Vcur, "Vcur", il);
+
+            cur = build_attn(inp_attn,
+                    model.layers[il].wo, model.layers[il].bo,
+                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+        }
+        if (il == n_layer - 1 && inp_out_ids) {
+            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+        }
+        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+        cb(ffn_inp, "ffn_inp", il);
+
+        // MoE branch
+        cur = build_norm(ffn_inp,
+                model.layers[il].ffn_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "ffn_norm", il);
+
+        ggml_tensor * moe_out =
+            build_moe_ffn(cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    nullptr,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU, true,
+                    false, 0.0,
+                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
+                    il);
+        cb(moe_out, "ffn_moe_out", il);
+        cur = moe_out;
+
+        cur = ggml_add(ctx0, cur, ffn_inp);
+
+        cur = build_cvec(cur, il);
+        cb(cur, "l_out", il);
+
+        // input for next layer
+        inpL = cur;
+    }
+    cur = inpL;
+
+    cur = build_norm(cur,
+            model.output_norm, NULL,
+            LLM_NORM_RMS, -1);
+
+    cb(cur, "result_norm", -1);
+    res->t_embd = cur;
+
+    // lm_head
+    cur = build_lora_mm(model.output, cur);
+
+    cb(cur, "result_output", -1);
+    res->t_logits = cur;
+
+    ggml_build_forward_expand(gf, cur);
+}