|
|
@@ -1118,6 +1118,26 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_JAMBA:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
|
|
+ ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
|
|
+ ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
|
|
+ ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+
|
|
|
+ for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
|
|
+ hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
|
|
|
+ case 12: // 900M 8x???M
|
|
|
+ case 32: // 51B 16x?B
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_XVERSE:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
@@ -3231,10 +3251,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
{
|
|
|
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
|
|
|
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
|
|
// if output is NULL, init from the input tok embed, duplicated to allow offloading
|
|
|
if (output == NULL) {
|
|
|
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@@ -3261,6 +3281,87 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_JAMBA:
|
|
|
+ {
|
|
|
+ const int64_t d_conv = hparams.ssm_d_conv;
|
|
|
+ const int64_t d_inner = hparams.ssm_d_inner;
|
|
|
+ const int64_t d_state = hparams.ssm_d_state;
|
|
|
+ const int64_t dt_rank = hparams.ssm_dt_rank;
|
|
|
+
|
|
|
+ // only an expansion factor of 2 is supported for now
|
|
|
+ GGML_ASSERT(2 * n_embd == d_inner);
|
|
|
+
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ {
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
|
|
+ // if output is NULL, init from the input tok embed, duplicated to allow offloading
|
|
|
+ if (output == NULL) {
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ const int64_t n_head_kv = hparams.n_head_kv(i);
|
|
|
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
|
|
|
+
|
|
|
+ auto & layer = layers[i];
|
|
|
+
|
|
|
+ // norm
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ if (n_head_kv == 0) {
|
|
|
+ // Mamba layer
|
|
|
+ layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
|
|
|
+
|
|
|
+ layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
|
|
|
+ layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
|
|
|
+
|
|
|
+ layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
|
|
|
+
|
|
|
+ layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
|
|
|
+
|
|
|
+ layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
|
|
|
+ layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
|
|
|
+
|
|
|
+ layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
|
|
|
+ layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
|
|
|
+
|
|
|
+ // no "weight" suffix for these
|
|
|
+ layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
|
|
|
+ layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
|
|
|
+
|
|
|
+ // out_proj
|
|
|
+ layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
|
|
|
+ } else {
|
|
|
+ // Attention layers
|
|
|
+
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ if (layer.ffn_gate_inp) {
|
|
|
+ // MoE
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
|
|
+ } else {
|
|
|
+ // FFN (no MoE)
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_XVERSE:
|
|
|
{
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
@@ -4910,16 +5011,6 @@ void llama_model::print_info() const {
|
|
|
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
|
|
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
|
|
|
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
|
|
|
- }
|
|
|
-
|
|
|
- if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2) {
|
|
|
- LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
|
|
- LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
|
|
- LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
|
|
- LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
|
|
|
- LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
|
|
|
- LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
|
|
|
-
|
|
|
if (!classifier_labels.empty()) {
|
|
|
LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
|
|
|
|
|
|
@@ -4930,6 +5021,18 @@ void llama_model::print_info() const {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ if (arch == LLM_ARCH_MAMBA ||
|
|
|
+ arch == LLM_ARCH_MAMBA2 ||
|
|
|
+ arch == LLM_ARCH_JAMBA ||
|
|
|
+ arch == LLM_ARCH_FALCON_H1) {
|
|
|
+ LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
|
|
+ LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
|
|
+ LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
|
|
+ LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
|
|
|
+ LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
|
|
|
+ LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
|
|
|
+ }
|
|
|
+
|
|
|
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
|
|
|
if (pimpl->n_elements >= 1e12) {
|
|
|
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
|
|
|
@@ -9935,62 +10038,8 @@ struct llm_build_starcoder2 : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
-struct llm_build_mamba : public llm_graph_context {
|
|
|
- llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
|
- ggml_tensor * cur;
|
|
|
- ggml_tensor * inpL;
|
|
|
-
|
|
|
- // {n_embd, n_tokens}
|
|
|
- inpL = build_inp_embd(model.tok_embd);
|
|
|
-
|
|
|
- auto * rs_inp = build_rs_inp();
|
|
|
-
|
|
|
- ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
-
|
|
|
- for (int il = 0; il < n_layer; ++il) {
|
|
|
- // norm
|
|
|
- cur = build_norm(inpL,
|
|
|
- model.layers[il].attn_norm, NULL,
|
|
|
- LLM_NORM_RMS, il);
|
|
|
- cb(cur, "attn_norm", il);
|
|
|
-
|
|
|
- if (model.arch == LLM_ARCH_MAMBA2) {
|
|
|
- cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
|
|
|
- } else {
|
|
|
- cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
|
|
|
- }
|
|
|
-
|
|
|
- if (il == n_layer - 1 && inp_out_ids) {
|
|
|
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
|
|
- }
|
|
|
-
|
|
|
- // residual
|
|
|
- cur = ggml_add(ctx0, cur, inpL);
|
|
|
-
|
|
|
- cur = build_cvec(cur, il);
|
|
|
- cb(cur, "l_out", il);
|
|
|
-
|
|
|
- // input for next layer
|
|
|
- inpL = cur;
|
|
|
- }
|
|
|
-
|
|
|
- // final rmsnorm
|
|
|
- cur = build_norm(inpL,
|
|
|
- model.output_norm, NULL,
|
|
|
- LLM_NORM_RMS, -1);
|
|
|
-
|
|
|
- cb(cur, "result_norm", -1);
|
|
|
- res->t_embd = cur;
|
|
|
-
|
|
|
- // lm_head
|
|
|
- cur = build_lora_mm(model.output, cur);
|
|
|
-
|
|
|
- cb(cur, "result_output", -1);
|
|
|
- res->t_logits = cur;
|
|
|
-
|
|
|
- ggml_build_forward_expand(gf, cur);
|
|
|
- }
|
|
|
+struct llm_graph_context_mamba : public llm_graph_context {
|
|
|
+ llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
|
|
|
|
|
|
ggml_tensor * build_mamba_layer(
|
|
|
llm_graph_input_rs * inp,
|
|
|
@@ -9998,11 +10047,14 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
ggml_tensor * cur,
|
|
|
const llama_model & model,
|
|
|
const llama_ubatch & ubatch,
|
|
|
- int il) const {
|
|
|
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
|
|
+ int il) {
|
|
|
+
|
|
|
+ const auto * mctx_cur = inp->mctx;
|
|
|
|
|
|
const auto kv_head = mctx_cur->get_head();
|
|
|
|
|
|
+ const auto & layer = model.layers[il];
|
|
|
+
|
|
|
const int64_t d_conv = hparams.ssm_d_conv;
|
|
|
const int64_t d_inner = hparams.ssm_d_inner;
|
|
|
const int64_t d_state = hparams.ssm_d_state;
|
|
|
@@ -10012,8 +10064,6 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
const int64_t n_seqs = ubatch.n_seqs;
|
|
|
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
|
|
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
|
|
- // Use the same RMS norm as the final layer norm
|
|
|
- const float norm_rms_eps = hparams.f_norm_rms_eps;
|
|
|
|
|
|
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
|
|
|
|
@@ -10031,7 +10081,7 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
|
|
|
|
|
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
|
|
|
- ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
|
|
|
+ ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
|
|
|
// split the above in two
|
|
|
// => {d_inner, n_seq_tokens, n_seqs}
|
|
|
ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
|
|
|
@@ -10060,10 +10110,10 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
// then permute away the ne[0] dimension,
|
|
|
// and then you're left with the resulting x tensor.
|
|
|
// For simultaneous sequences, all sequences need to have the same length.
|
|
|
- x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
|
|
+ x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
|
|
|
|
|
|
// bias
|
|
|
- x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
|
|
|
+ x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
|
|
|
|
|
|
x = ggml_silu(ctx0, x);
|
|
|
}
|
|
|
@@ -10071,27 +10121,27 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
// ssm
|
|
|
{
|
|
|
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
|
|
|
- ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
|
|
|
+ ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
|
|
|
// split
|
|
|
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
|
|
|
ggml_tensor * B = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
|
|
|
ggml_tensor * C = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
|
|
|
|
|
|
- // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
|
|
|
- if (ssm_dt_b_c_rms) {
|
|
|
- dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
|
|
|
- B = ggml_rms_norm(ctx0, B, norm_rms_eps);
|
|
|
- C = ggml_rms_norm(ctx0, C, norm_rms_eps);
|
|
|
+ // Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
|
|
|
+ if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
|
|
|
+ dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
|
|
|
}
|
|
|
|
|
|
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
|
|
|
- dt = build_lora_mm(model.layers[il].ssm_dt, dt);
|
|
|
- dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
|
|
|
+ dt = build_lora_mm(layer.ssm_dt, dt);
|
|
|
+ dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
|
|
|
|
|
|
cur = x;
|
|
|
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
|
|
|
|
|
|
- ggml_tensor * A = model.layers[il].ssm_a;
|
|
|
+ ggml_tensor * A = layer.ssm_a;
|
|
|
|
|
|
// use the states and the indices provided by build_recurrent_state
|
|
|
// (this is necessary in order to properly use the states before they are overwritten,
|
|
|
@@ -10117,16 +10167,15 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
|
|
|
// TODO: skip computing output earlier for unused tokens
|
|
|
|
|
|
- y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, model.layers[il].ssm_d));
|
|
|
- y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
|
|
|
+ y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
|
|
|
+ y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
|
|
|
|
|
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
|
|
- cur = build_lora_mm(model.layers[il].ssm_out, y);
|
|
|
+ cur = build_lora_mm(layer.ssm_out, y);
|
|
|
}
|
|
|
|
|
|
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
|
|
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
|
|
- // cb(cur, "mamba_out", il);
|
|
|
|
|
|
return cur;
|
|
|
}
|
|
|
@@ -10138,7 +10187,8 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
const llama_model & model,
|
|
|
const llama_ubatch & ubatch,
|
|
|
int il) const {
|
|
|
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
|
|
+
|
|
|
+ const auto * mctx_cur = inp->mctx;
|
|
|
|
|
|
const auto kv_head = mctx_cur->get_head();
|
|
|
|
|
|
@@ -10242,11 +10292,14 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
// TODO: skip computing output earlier for unused tokens
|
|
|
|
|
|
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
|
|
- y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
|
|
|
+ y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
|
|
|
|
|
// grouped RMS norm
|
|
|
- y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
|
|
- y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ if (model.layers[il].ssm_norm) {
|
|
|
+ y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
|
|
+ y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ }
|
|
|
+
|
|
|
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
|
|
|
|
|
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
|
|
@@ -10261,6 +10314,172 @@ struct llm_build_mamba : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llm_build_mamba : public llm_graph_context_mamba {
|
|
|
+ llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ // {n_embd, n_tokens}
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ auto * rs_inp = build_rs_inp();
|
|
|
+
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ // norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ if (model.arch == LLM_ARCH_MAMBA2) {
|
|
|
+ cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
|
|
|
+ } else {
|
|
|
+ cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1 && inp_out_ids) {
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ // residual
|
|
|
+ cur = ggml_add(ctx0, cur, inpL);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ // final rmsnorm
|
|
|
+ cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+
|
|
|
+};
|
|
|
+
|
|
|
+struct llm_build_jamba : public llm_graph_context_mamba {
|
|
|
+ llm_build_jamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ // {n_embd, n_tokens}
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ auto * inp_hybrid = build_inp_mem_hybrid();
|
|
|
+
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ const int64_t n_head_kv = hparams.n_head_kv(il);
|
|
|
+
|
|
|
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ if (n_head_kv == 0) {
|
|
|
+ cur = build_mamba_layer(inp_hybrid->get_recr(), gf, cur, model, ubatch, il);
|
|
|
+ } else {
|
|
|
+ // Attention
|
|
|
+
|
|
|
+ struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
+ struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
|
+ struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ // No RoPE :)
|
|
|
+ cur = build_attn(inp_hybrid->get_attn(), gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1 && inp_out_ids) {
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ // residual
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
|
|
|
+ cb(cur, "ffn_inp", il);
|
|
|
+
|
|
|
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ if (model.layers[il].ffn_gate_inp == nullptr) {
|
|
|
+ // FFN
|
|
|
+ cur = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+ } else {
|
|
|
+ // MoE branch
|
|
|
+ cur = build_moe_ffn(cur,
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
+ nullptr,
|
|
|
+ n_expert, n_expert_used,
|
|
|
+ LLM_FFN_SILU, false,
|
|
|
+ false, 0.0,
|
|
|
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
|
+ il);
|
|
|
+ cb(cur, "ffn_moe_out", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ // residual
|
|
|
+ cur = ggml_add(ctx0, ffn_inp, cur);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ // final rmsnorm
|
|
|
+ cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
struct llm_build_command_r : public llm_graph_context {
|
|
|
llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
@@ -14706,10 +14925,8 @@ struct llm_build_ernie4_5 : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
-struct llm_build_falcon_h1 : public llm_graph_context {
|
|
|
- const llama_model & model;
|
|
|
-
|
|
|
- llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
|
|
|
+struct llm_build_falcon_h1 : public llm_graph_context_mamba {
|
|
|
+ llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
|
|
ggml_tensor * cur;
|
|
|
@@ -14765,7 +14982,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
|
|
cb(Kcur, "Kcur-post-rope", il);
|
|
|
cb(Vcur, "Vcur-post-rope", il);
|
|
|
|
|
|
- ggml_tensor * attn_out = build_attn(inp, gf,
|
|
|
+ ggml_tensor * attn_out = build_attn(inp->get_attn(), gf,
|
|
|
model.layers[il].wo, NULL,
|
|
|
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
|
|
cb(attn_out, "attn_out", il);
|
|
|
@@ -14776,7 +14993,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
|
|
// Mamba2 layer
|
|
|
cb(cur, "ssm_in", il);
|
|
|
|
|
|
- ggml_tensor * ssm_out = build_mamba2_layer(inp, gf, cur, ubatch, il);
|
|
|
+ ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), gf, cur, model, ubatch, il);
|
|
|
cb(ssm_out, "ssm_out", il);
|
|
|
|
|
|
// // Aggregation
|
|
|
@@ -14832,139 +15049,6 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
|
|
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
|
}
|
|
|
-
|
|
|
- ggml_tensor * build_mamba2_layer(
|
|
|
- llm_graph_input_mem_hybrid * inp,
|
|
|
- ggml_cgraph * gf,
|
|
|
- ggml_tensor * cur,
|
|
|
- const llama_ubatch & ubatch,
|
|
|
- int il) const {
|
|
|
- const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
|
|
-
|
|
|
- const auto kv_head = kv_state->get_head();
|
|
|
-
|
|
|
- const int64_t d_conv = hparams.ssm_d_conv;
|
|
|
- const int64_t d_inner = hparams.ssm_d_inner;
|
|
|
- const int64_t d_state = hparams.ssm_d_state;
|
|
|
- const int64_t n_head = hparams.ssm_dt_rank;
|
|
|
- const int64_t head_dim = d_inner / n_head;
|
|
|
- const int64_t n_group = hparams.ssm_n_group;
|
|
|
- const int64_t n_seqs = ubatch.n_seqs;
|
|
|
-
|
|
|
- const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
|
-
|
|
|
- GGML_ASSERT(n_seqs != 0);
|
|
|
- GGML_ASSERT(ubatch.equal_seqs);
|
|
|
- GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
|
|
-
|
|
|
- ggml_tensor * conv_states_all = kv_state->get_r_l(il);
|
|
|
- ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
|
|
|
-
|
|
|
- ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
|
|
|
- conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
|
|
|
-
|
|
|
- // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
|
|
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
|
|
-
|
|
|
- // d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
|
|
|
-
|
|
|
- // {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
|
|
|
- ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
|
|
|
- cb(zxBCdt, "zxBCdt", il);
|
|
|
-
|
|
|
- // split the above in three
|
|
|
- ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
|
|
|
- ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
|
|
|
- ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
|
|
|
-
|
|
|
- // conv
|
|
|
- {
|
|
|
- // => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
|
|
|
- ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
|
|
|
-
|
|
|
- // copy last (d_conv - 1) columns back into the state cache
|
|
|
- ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
|
|
|
-
|
|
|
- ggml_build_forward_expand(gf,
|
|
|
- ggml_cpy(ctx0, last_conv,
|
|
|
- ggml_view_1d(ctx0, conv_states_all,
|
|
|
- (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
|
|
|
- kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
|
|
|
-
|
|
|
- // 1D convolution
|
|
|
- // The equivalent is to make a self-overlapping view of conv_x
|
|
|
- // over d_conv columns at each stride in the 3rd dimension,
|
|
|
- // then element-wise multiply that with the conv1d weight,
|
|
|
- // then sum the elements of each row,
|
|
|
- // (the last two steps are a dot product over rows (also doable with mul_mat))
|
|
|
- // then permute away the ne[0] dimension,
|
|
|
- // and then you're left with the resulting x tensor.
|
|
|
- // For simultaneous sequences, all sequences need to have the same length.
|
|
|
- xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
|
|
-
|
|
|
- // bias
|
|
|
- xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
|
|
|
-
|
|
|
- xBC = ggml_silu(ctx0, xBC);
|
|
|
- }
|
|
|
-
|
|
|
- // ssm
|
|
|
- {
|
|
|
- // These correspond to V K Q in SSM/attention duality
|
|
|
- ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
|
|
|
-
|
|
|
- ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
|
|
|
-
|
|
|
- ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
|
|
|
-
|
|
|
- // {n_head, n_seq_tokens, n_seqs}
|
|
|
- dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
|
|
|
-
|
|
|
- ggml_tensor * A = model.layers[il].ssm_a;
|
|
|
-
|
|
|
- // use the states and the indices provided by build_rs
|
|
|
- // (this is necessary in order to properly use the states before they are overwritten,
|
|
|
- // while avoiding to make unnecessary copies of the states)
|
|
|
- auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
|
|
|
- ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, kv_state->get_size());
|
|
|
-
|
|
|
- // TODO: use semistructured matrices to implement state-space duality
|
|
|
- // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
|
|
- return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
|
|
|
- };
|
|
|
-
|
|
|
- ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
|
|
|
-
|
|
|
- // store last states
|
|
|
- ggml_build_forward_expand(gf,
|
|
|
- ggml_cpy(ctx0,
|
|
|
- ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
|
|
|
- ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
|
|
|
-
|
|
|
- ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
|
|
|
-
|
|
|
- // TODO: skip computing output earlier for unused tokens
|
|
|
-
|
|
|
- y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
|
|
- y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
|
|
-
|
|
|
- // grouped RMS norm
|
|
|
- if (model.layers[il].ssm_norm) {
|
|
|
- y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
|
|
- y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
|
|
- }
|
|
|
-
|
|
|
- y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
|
|
-
|
|
|
- // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
|
|
- cur = build_lora_mm(model.layers[il].ssm_out, y);
|
|
|
- }
|
|
|
-
|
|
|
- // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
|
|
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
|
|
- cb(cur, "mamba_out", il);
|
|
|
- return cur;
|
|
|
- }
|
|
|
};
|
|
|
|
|
|
struct llm_build_arcee : public llm_graph_context {
|
|
|
@@ -15641,6 +15725,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_mamba>(*this, params, gf);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_JAMBA:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_jamba>(*this, params, gf);
|
|
|
+ } break;
|
|
|
case LLM_ARCH_XVERSE:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_xverse>(*this, params, gf);
|
|
|
@@ -15911,6 +15999,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_BLOOM:
|
|
|
case LLM_ARCH_MAMBA:
|
|
|
case LLM_ARCH_MAMBA2:
|
|
|
+ case LLM_ARCH_JAMBA:
|
|
|
case LLM_ARCH_JINA_BERT_V2:
|
|
|
case LLM_ARCH_T5:
|
|
|
case LLM_ARCH_T5ENCODER:
|