|
@@ -321,6 +321,7 @@ struct ggml_backend_opencl_context {
|
|
|
cl_program program_upscale;
|
|
cl_program program_upscale;
|
|
|
cl_program program_concat;
|
|
cl_program program_concat;
|
|
|
cl_program program_tsembd;
|
|
cl_program program_tsembd;
|
|
|
|
|
+ cl_program program_mul_mv_id_q4_0_f32_8x_flat;
|
|
|
|
|
|
|
|
cl_kernel kernel_add, kernel_add_row;
|
|
cl_kernel kernel_add, kernel_add_row;
|
|
|
cl_kernel kernel_mul, kernel_mul_row;
|
|
cl_kernel kernel_mul, kernel_mul_row;
|
|
@@ -366,6 +367,7 @@ struct ggml_backend_opencl_context {
|
|
|
cl_kernel kernel_concat_f32_contiguous;
|
|
cl_kernel kernel_concat_f32_contiguous;
|
|
|
cl_kernel kernel_concat_f32_non_contiguous;
|
|
cl_kernel kernel_concat_f32_non_contiguous;
|
|
|
cl_kernel kernel_timestep_embedding;
|
|
cl_kernel kernel_timestep_embedding;
|
|
|
|
|
+ cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
|
|
|
|
|
|
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
// Transpose kernels
|
|
// Transpose kernels
|
|
@@ -1112,7 +1114,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
GGML_LOG_CONT(".");
|
|
GGML_LOG_CONT(".");
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
- // repeat
|
|
|
|
|
|
|
+ // repeat
|
|
|
{
|
|
{
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
const std::string kernel_src {
|
|
const std::string kernel_src {
|
|
@@ -1256,6 +1258,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
}
|
|
}
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+ // mul_mv_id_q4_0_f32_8x_flat
|
|
|
|
|
+ {
|
|
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
|
|
+ const std::string kernel_src {
|
|
|
|
|
+ #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
|
|
|
|
|
+ };
|
|
|
|
|
+#else
|
|
|
|
|
+ const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
|
|
|
|
|
+#endif
|
|
|
|
|
+ backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
|
|
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
|
|
+
|
|
|
|
|
+ CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
|
|
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
// Adreno kernels
|
|
// Adreno kernels
|
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
// transpose
|
|
// transpose
|
|
@@ -2178,6 +2196,13 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|
|
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
|
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
|
|
}
|
|
}
|
|
|
return false;
|
|
return false;
|
|
|
|
|
+ case GGML_OP_MUL_MAT_ID:
|
|
|
|
|
+ if (op->src[0]->type == GGML_TYPE_Q4_0) {
|
|
|
|
|
+ if (op->src[1]->type == GGML_TYPE_F32) {
|
|
|
|
|
+ return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ return false;
|
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_RESHAPE:
|
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_VIEW:
|
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_PERMUTE:
|
|
@@ -5536,6 +5561,136 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|
|
}
|
|
}
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
|
|
+ GGML_ASSERT(src0);
|
|
|
|
|
+ GGML_ASSERT(src0->extra);
|
|
|
|
|
+ GGML_ASSERT(src1);
|
|
|
|
|
+ GGML_ASSERT(src1->extra);
|
|
|
|
|
+ GGML_ASSERT(dst);
|
|
|
|
|
+ GGML_ASSERT(dst->extra);
|
|
|
|
|
+
|
|
|
|
|
+ const ggml_tensor * src2 = dst->src[2];
|
|
|
|
|
+ GGML_ASSERT(src2);
|
|
|
|
|
+ GGML_ASSERT(src2->extra);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
|
|
+ cl_command_queue queue = backend_ctx->queue;
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
|
|
|
+ ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
|
|
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
|
+
|
|
|
|
|
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
|
|
|
+ cl_ulong offset2 = extra2->offset + src2->view_offs;
|
|
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
|
+
|
|
|
|
|
+#ifdef GGML_OPENCL_SOA_Q
|
|
|
|
|
+ ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
|
|
|
|
|
+#endif
|
|
|
|
|
+
|
|
|
|
|
+ const int ne00 = src0->ne[0];
|
|
|
|
|
+ const int ne01 = src0->ne[1];
|
|
|
|
|
+ const int ne02 = src0->ne[2];
|
|
|
|
|
+ const int ne03 = src0->ne[3];
|
|
|
|
|
+
|
|
|
|
|
+ const cl_ulong nb00 = src0->nb[0];
|
|
|
|
|
+ const cl_ulong nb02 = src0->nb[2];
|
|
|
|
|
+
|
|
|
|
|
+ const int ne10 = src1->ne[0];
|
|
|
|
|
+ const int ne11 = src1->ne[1];
|
|
|
|
|
+ const int ne12 = src1->ne[2];
|
|
|
|
|
+ const int ne13 = src1->ne[3];
|
|
|
|
|
+
|
|
|
|
|
+ const cl_ulong nb11 = src1->nb[1];
|
|
|
|
|
+ const cl_ulong nb12 = src1->nb[2];
|
|
|
|
|
+
|
|
|
|
|
+ const int ne20 = src2->ne[0];
|
|
|
|
|
+ const int ne21 = src2->ne[1];
|
|
|
|
|
+
|
|
|
|
|
+ const cl_ulong nb21 = src2->nb[1];
|
|
|
|
|
+
|
|
|
|
|
+ const int ne0 = dst->ne[0];
|
|
|
|
|
+ const int ne1 = dst->ne[1];
|
|
|
|
|
+
|
|
|
|
|
+ const int r2 = ne12/ne02;
|
|
|
|
|
+ const int r3 = ne13/ne03;
|
|
|
|
|
+ const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
|
|
|
|
|
+
|
|
|
|
|
+ GGML_ASSERT(ne00 == ne10);
|
|
|
|
|
+
|
|
|
|
|
+ int sgs = 32; // subgroup size
|
|
|
|
|
+ int nsg = 1; // number of subgroups
|
|
|
|
|
+ int nrows = 1; // number of row in src1
|
|
|
|
|
+ int ndst = 4; // number of values produced by each subgroup
|
|
|
|
|
+
|
|
|
|
|
+ cl_kernel kernel;
|
|
|
|
|
+
|
|
|
|
|
+ // subgroup mat vec
|
|
|
|
|
+ switch (src0->type) {
|
|
|
|
|
+ case GGML_TYPE_Q4_0: {
|
|
|
|
|
+ kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
|
|
|
|
|
+
|
|
|
|
|
+ if (backend_ctx->gpu_family == INTEL) {
|
|
|
|
|
+ sgs = 16;
|
|
|
|
|
+ nsg = 1;
|
|
|
|
|
+ ndst = 8;
|
|
|
|
|
+ } else if (backend_ctx->gpu_family == ADRENO) {
|
|
|
|
|
+ sgs = 64;
|
|
|
|
|
+ nsg = 1;
|
|
|
|
|
+ ndst = 8;
|
|
|
|
|
+ } else {
|
|
|
|
|
+ GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
|
|
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
|
|
|
|
|
+
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ default:
|
|
|
|
|
+ GGML_ASSERT(false && "not implemented");;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ int _ne1 = 1;
|
|
|
|
|
+ int ne123 = dst_rows;
|
|
|
|
|
+
|
|
|
|
|
+ size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
|
|
|
|
|
+ size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
|
|
|
|
|
+
|
|
|
|
|
+#ifdef GGML_OPENCL_PROFILING
|
|
|
|
|
+ cl_event evt;
|
|
|
|
|
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
|
+
|
|
|
|
|
+ g_profiling_info.emplace_back();
|
|
|
|
|
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
|
|
|
+#else
|
|
|
|
|
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
|
|
|
+#endif
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0);
|
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src0->extra);
|
|
@@ -6444,6 +6599,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|
|
}
|
|
}
|
|
|
func = ggml_cl_mul_mat;
|
|
func = ggml_cl_mul_mat;
|
|
|
break;
|
|
break;
|
|
|
|
|
+ case GGML_OP_MUL_MAT_ID:
|
|
|
|
|
+ if (!any_on_device) {
|
|
|
|
|
+ return false;
|
|
|
|
|
+ }
|
|
|
|
|
+ func = ggml_cl_mul_mat_id;
|
|
|
|
|
+ break;
|
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SCALE:
|
|
|
if (!any_on_device) {
|
|
if (!any_on_device) {
|
|
|
return false;
|
|
return false;
|