|
|
@@ -1087,9 +1087,9 @@ enum e_model {
|
|
|
MODEL_70B,
|
|
|
};
|
|
|
|
|
|
-static const size_t kB = 1024;
|
|
|
-static const size_t MB = 1024*kB;
|
|
|
-static const size_t GB = 1024*MB;
|
|
|
+static const size_t kiB = 1024;
|
|
|
+static const size_t MiB = 1024*kiB;
|
|
|
+static const size_t GiB = 1024*MiB;
|
|
|
|
|
|
struct llama_hparams {
|
|
|
bool vocab_only;
|
|
|
@@ -1488,7 +1488,7 @@ static bool llama_kv_cache_init(
|
|
|
vram_kv_cache += ggml_nbytes(cache.k);
|
|
|
}
|
|
|
if (vram_kv_cache > 0) {
|
|
|
- LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
|
|
}
|
|
|
}
|
|
|
#endif
|
|
|
@@ -2543,8 +2543,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|
|
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
|
|
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
|
|
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
|
|
- if (ml.n_bytes < GB) {
|
|
|
- LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
|
|
+ if (ml.n_bytes < GiB) {
|
|
|
+ LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
|
|
} else {
|
|
|
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
|
|
}
|
|
|
@@ -2582,7 +2582,7 @@ static void llm_load_tensors(
|
|
|
|
|
|
ml.calc_sizes(ctx_size, mmapped_size);
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
|
|
|
|
|
|
// create the ggml context
|
|
|
{
|
|
|
@@ -3231,7 +3231,7 @@ static void llm_load_tensors(
|
|
|
ctx_size +
|
|
|
mmapped_size - vram_weights; // weights in VRAM not in memory
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
|
|
|
|
|
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
|
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
|
|
@@ -3250,7 +3250,7 @@ static void llm_load_tensors(
|
|
|
#endif // GGML_USE_CUBLAS
|
|
|
|
|
|
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
|
|
- LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
|
|
#else
|
|
|
(void) n_gpu_layers;
|
|
|
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
|
|
@@ -7962,7 +7962,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
workers.clear();
|
|
|
}
|
|
|
|
|
|
- LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
|
|
+ LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
|
|
int64_t tot_count = 0;
|
|
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
|
|
hist_all[i] += hist_cur[i];
|
|
|
@@ -8502,7 +8502,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
|
|
|
{
|
|
|
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
|
|
- LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
|
|
|
}
|
|
|
|
|
|
// resized during inference
|
|
|
@@ -8547,7 +8547,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
// measure memory requirements for the graph
|
|
|
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
|
|
|
|
|
// recreate allocator with exact memory requirements
|
|
|
ggml_allocr_free(ctx->alloc);
|
|
|
@@ -8561,7 +8561,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
#endif
|
|
|
#ifdef GGML_USE_CUBLAS
|
|
|
ggml_cuda_set_scratch_size(alloc_size);
|
|
|
- LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
|
|
|
|
|
// calculate total VRAM usage
|
|
|
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
|
|
|
@@ -8581,10 +8581,10 @@ struct llama_context * llama_new_context_with_model(
|
|
|
size_t ctx_vram_size = alloc_size + kv_vram_size;
|
|
|
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
|
|
|
+ LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
|
|
|
total_vram_size / 1024.0 / 1024.0,
|
|
|
model_vram_size / 1024.0 / 1024.0,
|
|
|
- ctx_vram_size / 1024.0 / 1024.0);
|
|
|
+ ctx_vram_size / 1024.0 / 1024.0);
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
@@ -8605,7 +8605,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
|
|
|
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
|
|
+ LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
|
|
|
|
|
|
#define LLAMA_METAL_CHECK_BUF(result) \
|
|
|
if (!(result)) { \
|