|
|
@@ -182,6 +182,19 @@ struct llama_kv_cache {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llama_vocab {
|
|
|
+ using id = int32_t;
|
|
|
+ using token = std::string;
|
|
|
+
|
|
|
+ struct token_score {
|
|
|
+ token tok;
|
|
|
+ float score;
|
|
|
+ };
|
|
|
+
|
|
|
+ std::unordered_map<token, id> token_to_id;
|
|
|
+ std::vector<token_score> id_to_token;
|
|
|
+};
|
|
|
+
|
|
|
struct llama_model {
|
|
|
e_model type = MODEL_UNKNOWN;
|
|
|
|
|
|
@@ -198,10 +211,6 @@ struct llama_model {
|
|
|
// context
|
|
|
struct ggml_context * ctx = NULL;
|
|
|
|
|
|
- // key + value cache for the self attention
|
|
|
- // TODO: move to llama_state
|
|
|
- struct llama_kv_cache kv_self;
|
|
|
-
|
|
|
// the model memory buffer
|
|
|
llama_ctx_buffer buf;
|
|
|
|
|
|
@@ -215,6 +224,11 @@ struct llama_model {
|
|
|
// for quantize-stats only
|
|
|
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
|
|
|
|
|
+ int64_t t_load_us = 0;
|
|
|
+ int64_t t_start_us = 0;
|
|
|
+
|
|
|
+ llama_vocab vocab;
|
|
|
+
|
|
|
~llama_model() {
|
|
|
if (ctx) {
|
|
|
ggml_free(ctx);
|
|
|
@@ -233,24 +247,11 @@ struct llama_model {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
-struct llama_vocab {
|
|
|
- using id = int32_t;
|
|
|
- using token = std::string;
|
|
|
-
|
|
|
- struct token_score {
|
|
|
- token tok;
|
|
|
- float score;
|
|
|
- };
|
|
|
-
|
|
|
- std::unordered_map<token, id> token_to_id;
|
|
|
- std::vector<token_score> id_to_token;
|
|
|
-};
|
|
|
-
|
|
|
struct llama_context {
|
|
|
+ llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
|
|
|
+
|
|
|
std::mt19937 rng;
|
|
|
|
|
|
- int64_t t_load_us = 0;
|
|
|
- int64_t t_start_us = 0;
|
|
|
bool has_evaluated_once = false;
|
|
|
|
|
|
int64_t t_sample_us = 0;
|
|
|
@@ -261,8 +262,16 @@ struct llama_context {
|
|
|
int32_t n_eval = 0; // number of eval calls
|
|
|
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
|
|
|
|
|
- llama_model model;
|
|
|
- llama_vocab vocab;
|
|
|
+ const llama_model & model;
|
|
|
+ const llama_vocab & vocab;
|
|
|
+
|
|
|
+ bool model_owner = false;
|
|
|
+
|
|
|
+ int64_t t_load_us;
|
|
|
+ int64_t t_start_us;
|
|
|
+
|
|
|
+ // key + value cache for the self attention
|
|
|
+ struct llama_kv_cache kv_self;
|
|
|
|
|
|
size_t mem_per_token = 0;
|
|
|
|
|
|
@@ -1033,7 +1042,8 @@ static const char *llama_model_type_name(e_model type) {
|
|
|
|
|
|
static void llama_model_load_internal(
|
|
|
const std::string & fname,
|
|
|
- llama_context & lctx,
|
|
|
+ llama_model & model,
|
|
|
+ llama_vocab & vocab,
|
|
|
int n_ctx,
|
|
|
int n_batch,
|
|
|
int n_gpu_layers,
|
|
|
@@ -1047,12 +1057,11 @@ static void llama_model_load_internal(
|
|
|
llama_progress_callback progress_callback,
|
|
|
void * progress_callback_user_data) {
|
|
|
|
|
|
- lctx.t_start_us = ggml_time_us();
|
|
|
+ model.t_start_us = ggml_time_us();
|
|
|
|
|
|
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
|
|
|
|
|
|
- lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
|
|
|
- auto & model = lctx.model;
|
|
|
+ vocab = std::move(ml->file_loaders.at(0)->vocab);
|
|
|
model.hparams = ml->file_loaders.at(0)->hparams;
|
|
|
model.n_gpu_layers = n_gpu_layers;
|
|
|
llama_file_version file_version = ml->file_loaders.at(0)->file_version;
|
|
|
@@ -1122,15 +1131,15 @@ static void llama_model_load_internal(
|
|
|
|
|
|
// create the ggml context
|
|
|
{
|
|
|
- lctx.model.buf.resize(ctx_size);
|
|
|
+ model.buf.resize(ctx_size);
|
|
|
if (use_mlock) {
|
|
|
- lctx.model.mlock_buf.init(lctx.model.buf.addr);
|
|
|
- lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
|
|
|
+ model.mlock_buf.init(model.buf.addr);
|
|
|
+ model.mlock_buf.grow_to(model.buf.size);
|
|
|
}
|
|
|
|
|
|
struct ggml_init_params params = {
|
|
|
- /*.mem_size =*/ lctx.model.buf.size,
|
|
|
- /*.mem_buffer =*/ lctx.model.buf.addr,
|
|
|
+ /*.mem_size =*/ model.buf.size,
|
|
|
+ /*.mem_buffer =*/ model.buf.addr,
|
|
|
/*.no_alloc =*/ ml->use_mmap,
|
|
|
};
|
|
|
|
|
|
@@ -1311,7 +1320,7 @@ static void llama_model_load_internal(
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
- ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
|
|
+ ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
|
|
|
|
|
|
if (progress_callback) {
|
|
|
progress_callback(1.0f, progress_callback_user_data);
|
|
|
@@ -1321,12 +1330,13 @@ static void llama_model_load_internal(
|
|
|
|
|
|
// loading time will be recalculate after the first eval, so
|
|
|
// we take page faults deferred by mmap() into consideration
|
|
|
- lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
|
|
|
+ model.t_load_us = ggml_time_us() - model.t_start_us;
|
|
|
}
|
|
|
|
|
|
static bool llama_model_load(
|
|
|
const std::string & fname,
|
|
|
- llama_context & lctx,
|
|
|
+ llama_model & model,
|
|
|
+ llama_vocab & vocab,
|
|
|
int n_ctx,
|
|
|
int n_batch,
|
|
|
int n_gpu_layers,
|
|
|
@@ -1340,7 +1350,7 @@ static bool llama_model_load(
|
|
|
llama_progress_callback progress_callback,
|
|
|
void *progress_callback_user_data) {
|
|
|
try {
|
|
|
- llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
|
|
|
+ llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
|
|
|
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
|
|
return true;
|
|
|
} catch (const std::exception & err) {
|
|
|
@@ -1378,7 +1388,7 @@ static bool llama_eval_internal(
|
|
|
const auto & model = lctx.model;
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
|
|
- const auto & kv_self = model.kv_self;
|
|
|
+ const auto & kv_self = lctx.kv_self;
|
|
|
|
|
|
LLAMA_ASSERT(!!kv_self.ctx);
|
|
|
|
|
|
@@ -1726,7 +1736,7 @@ static bool llama_eval_internal(
|
|
|
//memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
|
|
|
|
|
|
// update kv token count
|
|
|
- lctx.model.kv_self.n = n_past + N;
|
|
|
+ lctx.kv_self.n = n_past + N;
|
|
|
|
|
|
// extract logits
|
|
|
{
|
|
|
@@ -2634,12 +2644,39 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
// interface implementation
|
|
|
//
|
|
|
|
|
|
-struct llama_context * llama_init_from_file(
|
|
|
+struct llama_model * llama_load_model_from_file(
|
|
|
const char * path_model,
|
|
|
struct llama_context_params params) {
|
|
|
ggml_time_init();
|
|
|
|
|
|
- llama_context * ctx = new llama_context;
|
|
|
+ llama_model * model = new llama_model;
|
|
|
+
|
|
|
+ ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
|
+
|
|
|
+ if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
|
|
+ params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
|
|
|
+ params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
|
|
|
+ delete model;
|
|
|
+ fprintf(stderr, "%s: failed to load model\n", __func__);
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ return model;
|
|
|
+}
|
|
|
+
|
|
|
+void llama_free_model(struct llama_model * model) {
|
|
|
+ delete model;
|
|
|
+}
|
|
|
+
|
|
|
+struct llama_context * llama_new_context_with_model(
|
|
|
+ struct llama_model * model,
|
|
|
+ struct llama_context_params params) {
|
|
|
+
|
|
|
+ if (!model) {
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_context * ctx = new llama_context(*model, model->vocab);
|
|
|
|
|
|
if (params.seed < 0) {
|
|
|
params.seed = time(NULL);
|
|
|
@@ -2667,24 +2704,16 @@ struct llama_context * llama_init_from_file(
|
|
|
|
|
|
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
|
|
|
|
- if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu,
|
|
|
- params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
|
|
|
- params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
|
|
|
- fprintf(stderr, "%s: failed to load model\n", __func__);
|
|
|
- llama_free(ctx);
|
|
|
- return nullptr;
|
|
|
- }
|
|
|
-
|
|
|
// reserve memory for context buffers
|
|
|
if (!params.vocab_only) {
|
|
|
- if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
|
|
|
+ if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
|
|
|
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
|
|
llama_free(ctx);
|
|
|
return nullptr;
|
|
|
}
|
|
|
|
|
|
{
|
|
|
- const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
|
|
|
+ const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
|
|
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
|
|
}
|
|
|
|
|
|
@@ -2736,8 +2765,8 @@ struct llama_context * llama_init_from_file(
|
|
|
|
|
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
|
|
|
|
|
|
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
|
|
|
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size, 0));
|
|
|
+ LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
|
|
|
+ LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
|
|
|
|
|
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
|
|
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
|
|
|
@@ -2748,7 +2777,23 @@ struct llama_context * llama_init_from_file(
|
|
|
return ctx;
|
|
|
}
|
|
|
|
|
|
+struct llama_context * llama_init_from_file(
|
|
|
+ const char * path_model,
|
|
|
+ struct llama_context_params params) {
|
|
|
+
|
|
|
+ struct llama_model * model = llama_load_model_from_file(path_model, params);
|
|
|
+ if (!model) {
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+ struct llama_context * ctx = llama_new_context_with_model(model, params);
|
|
|
+ ctx->model_owner = true;
|
|
|
+ return ctx;
|
|
|
+}
|
|
|
+
|
|
|
void llama_free(struct llama_context * ctx) {
|
|
|
+ if (ctx->model_owner) {
|
|
|
+ delete &ctx->model;
|
|
|
+ }
|
|
|
delete ctx;
|
|
|
}
|
|
|
|
|
|
@@ -2765,11 +2810,9 @@ int llama_model_quantize(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
|
|
|
+int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
|
|
|
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
|
|
|
|
|
- auto & model = ctx->model;
|
|
|
-
|
|
|
const int64_t t_start_lora_us = ggml_time_us();
|
|
|
|
|
|
auto fin = std::ifstream(path_lora, std::ios::binary);
|
|
|
@@ -3012,7 +3055,16 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
|
|
|
|
|
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
|
|
|
try {
|
|
|
- return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
|
|
|
+ return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
|
|
|
+ } catch (const std::exception & err) {
|
|
|
+ fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
|
|
|
+ try {
|
|
|
+ return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
|
|
|
} catch (const std::exception & err) {
|
|
|
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
|
|
return 1;
|
|
|
@@ -3020,7 +3072,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|
|
}
|
|
|
|
|
|
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
|
|
|
- return ctx->model.kv_self.n;
|
|
|
+ return ctx->kv_self.n;
|
|
|
}
|
|
|
|
|
|
#define LLAMA_MAX_RNG_STATE (64*1024)
|
|
|
@@ -3045,7 +3097,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
|
|
|
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
|
|
|
const size_t s_kv_size = sizeof(size_t);
|
|
|
const size_t s_kv_ntok = sizeof(int);
|
|
|
- const size_t s_kv = ctx->model.kv_self.buf.size;
|
|
|
+ const size_t s_kv = ctx->kv_self.buf.size;
|
|
|
|
|
|
const size_t s_total = (
|
|
|
+ s_rng_size
|
|
|
@@ -3111,7 +3163,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|
|
|
|
|
// copy kv cache
|
|
|
{
|
|
|
- const auto & kv_self = ctx->model.kv_self;
|
|
|
+ const auto & kv_self = ctx->kv_self;
|
|
|
const auto & hparams = ctx->model.hparams;
|
|
|
const int n_layer = hparams.n_layer;
|
|
|
const int n_embd = hparams.n_embd;
|
|
|
@@ -3215,7 +3267,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|
|
|
|
|
// set kv cache
|
|
|
{
|
|
|
- const auto & kv_self = ctx->model.kv_self;
|
|
|
+ const auto & kv_self = ctx->kv_self;
|
|
|
const auto & hparams = ctx->model.hparams;
|
|
|
const int n_layer = hparams.n_layer;
|
|
|
const int n_embd = hparams.n_embd;
|
|
|
@@ -3259,7 +3311,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|
|
ggml_free(cpy_ctx);
|
|
|
}
|
|
|
|
|
|
- ctx->model.kv_self.n = kv_ntok;
|
|
|
+ ctx->kv_self.n = kv_ntok;
|
|
|
}
|
|
|
|
|
|
const size_t nread = inp - src;
|
|
|
@@ -3506,6 +3558,6 @@ const char * llama_print_system_info(void) {
|
|
|
}
|
|
|
|
|
|
// For internal test use
|
|
|
-std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
|
|
+const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
|
|
return ctx->model.tensors_by_name;
|
|
|
}
|