|
@@ -125,6 +125,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_355B_A32B: return "355B.A32B";
|
|
case LLM_TYPE_355B_A32B: return "355B.A32B";
|
|
|
case LLM_TYPE_E2B: return "E2B";
|
|
case LLM_TYPE_E2B: return "E2B";
|
|
|
case LLM_TYPE_E4B: return "E4B";
|
|
case LLM_TYPE_E4B: return "E4B";
|
|
|
|
|
+ case LLM_TYPE_256xA10B: return "230x10B";
|
|
|
default: return "?B";
|
|
default: return "?B";
|
|
|
}
|
|
}
|
|
|
}
|
|
}
|
|
@@ -2124,6 +2125,26 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_MINIMAX_M2:
|
|
|
|
|
+ {
|
|
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
|
|
|
|
|
+
|
|
|
|
|
+ // MiniMax M2 uses GQA with head_dim=128, not n_embd/n_head=64
|
|
|
|
|
+ // Override if KEY_LENGTH is not explicitly set in GGUF
|
|
|
|
|
+ if (hparams.n_embd_head_k == hparams.n_embd / hparams.n_head()) {
|
|
|
|
|
+ // Model uses GQA: n_head=48, n_head_kv=8, head_dim=128
|
|
|
|
|
+ // Q dim = 48*128=6144, K/V dim = 8*128=1024
|
|
|
|
|
+ hparams.n_embd_head_k = 128;
|
|
|
|
|
+ hparams.n_embd_head_v = 128;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ switch (hparams.n_layer) {
|
|
|
|
|
+ case 62: type = LLM_TYPE_256xA10B; break;
|
|
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default: throw std::runtime_error("unsupported model architecture");
|
|
default: throw std::runtime_error("unsupported model architecture");
|
|
|
}
|
|
}
|
|
|
|
|
|
|
@@ -2575,6 +2596,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
|
|
|
|
|
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
|
|
|
|
|
|
|
|
+ // Gate/Up in file are ordered [n_embd, n_ff_exp, n_expert]
|
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
@@ -3263,6 +3285,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
// MoE branch
|
|
// MoE branch
|
|
|
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
|
|
|
|
|
|
|
|
+ // optional router bias (e_score_correction.bias)
|
|
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
|
|
|
|
|
+
|
|
|
|
|
+ // merged expert tensors
|
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
@@ -3349,6 +3375,59 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
// MoE branch
|
|
// MoE branch
|
|
|
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
|
|
|
|
|
|
|
|
+ // optional router bias (e_score_correction.bias)
|
|
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
|
|
|
|
|
+
|
|
|
|
|
+ // merged expert tensors
|
|
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
|
|
+ case LLM_ARCH_MINIMAX_M2:
|
|
|
|
|
+ {
|
|
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ // output
|
|
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
|
|
|
|
+ // if output is NULL, init from the input tok embed
|
|
|
|
|
+ if (output == NULL) {
|
|
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
|
|
+ auto & layer = layers[i];
|
|
|
|
|
+
|
|
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
|
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ // QK norm (per-head: each of n_head Q heads and n_head_kv K heads has separate norm params)
|
|
|
|
|
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
|
|
|
|
|
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k * n_head_kv}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ if (n_expert == 0) {
|
|
|
|
|
+ throw std::runtime_error("n_expert must be > 0 for MINIMAX_M2");
|
|
|
|
|
+ }
|
|
|
|
|
+ if (n_expert_used == 0) {
|
|
|
|
|
+ throw std::runtime_error("n_expert_used must be > 0 for MINIMAX_M2");
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // MoE branch
|
|
|
|
|
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
|
|
|
+
|
|
|
|
|
+ // optional router bias (e_score_correction_bias -> exp_probs_b, no suffix)
|
|
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, nullptr, i), {n_expert}, TENSOR_NOT_REQUIRED);
|
|
|
|
|
+
|
|
|
|
|
+ // merged expert tensors
|
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
@@ -9484,6 +9563,151 @@ struct llm_build_qwen3 : public llm_graph_context {
|
|
|
}
|
|
}
|
|
|
};
|
|
};
|
|
|
|
|
|
|
|
|
|
+struct llm_build_minimax_m2 : public llm_graph_context {
|
|
|
|
|
+ llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
|
+
|
|
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
|
|
+ // MiniMax M2 uses partial RoPE: head_dim=128, rotary_dim=64
|
|
|
|
|
+
|
|
|
|
|
+ llama_expert_gating_func_type gating_func =
|
|
|
|
|
+ static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func);
|
|
|
|
|
+ if (gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
|
|
|
|
+ gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * cur;
|
|
|
|
|
+ ggml_tensor * inpL;
|
|
|
|
|
+
|
|
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
|
|
+
|
|
|
|
|
+ // inp_pos - contains the positions
|
|
|
|
|
+ ggml_tensor * inp_pos = build_inp_pos();
|
|
|
|
|
+
|
|
|
|
|
+ auto * inp_attn = build_attn_inp_kv();
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
|
+
|
|
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
|
|
+ ggml_tensor * inpSA = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ // norm
|
|
|
|
|
+ cur = build_norm(inpL,
|
|
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
|
|
+
|
|
|
|
|
+ // self_attention
|
|
|
|
|
+ {
|
|
|
|
|
+ // compute Q and K and RoPE them
|
|
|
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ // MiniMax M2: QK norm is applied to flattened Q/K before reshape
|
|
|
|
|
+ // Q: {n_embd_head_k * n_head, n_tokens} -> norm -> reshape to 3D
|
|
|
|
|
+ // K: {n_embd_head_k * n_head_kv, n_tokens} -> norm -> reshape to 3D
|
|
|
|
|
+ if (model.layers[il].attn_q_norm) {
|
|
|
|
|
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
|
|
|
+ cb(Qcur, "Qcur_normed", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (model.layers[il].attn_k_norm) {
|
|
|
|
|
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
|
|
|
+ cb(Kcur, "Kcur_normed", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
|
|
+
|
|
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
|
|
+ ctx0, Qcur, inp_pos, nullptr,
|
|
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+
|
|
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
|
|
+ ctx0, Kcur, inp_pos, nullptr,
|
|
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = build_attn(inp_attn,
|
|
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (il == n_layer - 1 && inp_out_ids) {
|
|
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
|
|
+
|
|
|
|
|
+ // MoE branch
|
|
|
|
|
+ cur = build_norm(ffn_inp,
|
|
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * moe_out =
|
|
|
|
|
+ build_moe_ffn(cur,
|
|
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
|
|
+ model.layers[il].ffn_gate_inp_b,
|
|
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
|
|
+ model.layers[il].ffn_up_exps_b,
|
|
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
|
|
+ model.layers[il].ffn_gate_exps_b,
|
|
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
|
|
+ model.layers[il].ffn_down_exps_b,
|
|
|
|
|
+ model.layers[il].ffn_exp_probs_b,
|
|
|
|
|
+ n_expert, n_expert_used,
|
|
|
|
|
+ LLM_FFN_SILU, true,
|
|
|
|
|
+ false, 0.0f,
|
|
|
|
|
+ gating_func,
|
|
|
|
|
+ il);
|
|
|
|
|
+ cb(moe_out, "ffn_moe_out", il);
|
|
|
|
|
+ cur = moe_out;
|
|
|
|
|
+
|
|
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
|
|
+
|
|
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
|
|
+ cb(cur, "l_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ // input for next layer
|
|
|
|
|
+ inpL = cur;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ cur = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ cur = build_norm(cur,
|
|
|
|
|
+ model.output_norm, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
|
|
+
|
|
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
|
|
+ res->t_embd = cur;
|
|
|
|
|
+
|
|
|
|
|
+ // lm_head
|
|
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
|
|
+
|
|
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
|
|
+ res->t_logits = cur;
|
|
|
|
|
+
|
|
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
|
|
+ }
|
|
|
|
|
+};
|
|
|
|
|
+
|
|
|
struct llm_build_qwen3moe : public llm_graph_context {
|
|
struct llm_build_qwen3moe : public llm_graph_context {
|
|
|
llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
@@ -19888,6 +20112,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
{
|
|
{
|
|
|
llm = std::make_unique<llm_build_qwen3moe>(*this, params);
|
|
llm = std::make_unique<llm_build_qwen3moe>(*this, params);
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_MINIMAX_M2:
|
|
|
|
|
+ {
|
|
|
|
|
+ llm = std::make_unique<llm_build_minimax_m2>(*this, params);
|
|
|
|
|
+ } break;
|
|
|
case LLM_ARCH_PHI2:
|
|
case LLM_ARCH_PHI2:
|
|
|
{
|
|
{
|
|
|
llm = std::make_unique<llm_build_phi2>(*this, params);
|
|
llm = std::make_unique<llm_build_phi2>(*this, params);
|
|
@@ -20397,6 +20625,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_SEED_OSS:
|
|
case LLM_ARCH_SEED_OSS:
|
|
|
case LLM_ARCH_GROVEMOE:
|
|
case LLM_ARCH_GROVEMOE:
|
|
|
case LLM_ARCH_APERTUS:
|
|
case LLM_ARCH_APERTUS:
|
|
|
|
|
+ case LLM_ARCH_MINIMAX_M2:
|
|
|
return LLAMA_ROPE_TYPE_NEOX;
|
|
return LLAMA_ROPE_TYPE_NEOX;
|
|
|
|
|
|
|
|
case LLM_ARCH_QWEN2VL:
|
|
case LLM_ARCH_QWEN2VL:
|