|
|
@@ -18,203 +18,176 @@ static void dump(const llama_token_data_array * cur_p) {
|
|
|
|
|
|
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
|
|
|
|
|
|
-#define APPLY(__cnstr, __cur_p) do { \
|
|
|
- auto * cnstr = (__cnstr); \
|
|
|
- llama_sampler_apply(cnstr, (__cur_p)); \
|
|
|
- llama_sampler_free(cnstr); \
|
|
|
-} while(0)
|
|
|
+struct sampler_tester {
|
|
|
+ sampler_tester(size_t n_vocab) {
|
|
|
+ cur.reserve(n_vocab);
|
|
|
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
+ const float logit = logf(token_id);
|
|
|
+ cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
+ }
|
|
|
|
|
|
-static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
+ cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
|
|
|
+ }
|
|
|
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
+ sampler_tester(const std::vector<float> & probs, const std::vector<float> & probs_expected) : probs_expected(probs_expected) {
|
|
|
+ cur.reserve(probs.size());
|
|
|
+ for (llama_token token_id = 0; token_id < (llama_token)probs.size(); token_id++) {
|
|
|
+ const float logit = logf(probs[token_id]);
|
|
|
+ cur.emplace_back(llama_token_data{token_id, logit, probs[token_id]});
|
|
|
+ }
|
|
|
+
|
|
|
+ cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
|
|
|
}
|
|
|
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_top_k(k), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
-
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
|
|
|
+ void apply(llama_sampler * sampler) {
|
|
|
+ llama_sampler_apply(sampler, &cur_p);
|
|
|
+ llama_sampler_free(sampler);
|
|
|
}
|
|
|
-}
|
|
|
|
|
|
-static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
+ void check() {
|
|
|
+ GGML_ASSERT(cur_p.size == probs_expected.size());
|
|
|
+ for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
+ GGML_ASSERT(fabs(cur_p.data[i].p - probs_expected[i]) < 1e-5);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_token_data_array cur_p;
|
|
|
+
|
|
|
+private:
|
|
|
+ const std::vector<float> probs_expected;
|
|
|
|
|
|
std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
+};
|
|
|
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
-
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
|
- }
|
|
|
+static void test_temp(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
+
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_temp(temp));
|
|
|
+ tester.apply(llama_sampler_init_dist(0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+
|
|
|
+ tester.check();
|
|
|
}
|
|
|
|
|
|
-static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
+static void test_temp_ext(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp, float delta, float exponent) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_temp_ext(temp, delta, exponent));
|
|
|
+ tester.apply(llama_sampler_init_dist (0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
+ tester.check();
|
|
|
+}
|
|
|
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
|
- }
|
|
|
+static void test_top_k(const std::vector<float> & probs, const std::vector<float> & probs_expected, int k) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
+
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_top_k(k));
|
|
|
+ tester.apply(llama_sampler_init_dist (0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+
|
|
|
+ tester.check();
|
|
|
}
|
|
|
|
|
|
-static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
+static void test_top_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_top_p(p, 1));
|
|
|
+ tester.apply(llama_sampler_init_dist (0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
-
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
|
- }
|
|
|
+ tester.check();
|
|
|
}
|
|
|
|
|
|
-static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t) {
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
+static void test_tfs(const std::vector<float> & probs, const std::vector<float> & probs_expected, float z) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_tail_free(z, 1));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_xtc(p, t, 0, 0), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
-
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
|
|
|
- }
|
|
|
+ tester.check();
|
|
|
}
|
|
|
|
|
|
-static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
+static void test_min_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_min_p(p, 1));
|
|
|
+ tester.apply(llama_sampler_init_dist (0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(llama_sampler_init_typical(p, 1), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
+ tester.check();
|
|
|
+}
|
|
|
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
|
- }
|
|
|
+static void test_xtc(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p, float t) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
+
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_xtc(p, t, 0, 0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+
|
|
|
+ tester.check();
|
|
|
+}
|
|
|
+
|
|
|
+static void test_typical(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
+
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(llama_sampler_init_typical(p, 1));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+
|
|
|
+ tester.check();
|
|
|
}
|
|
|
|
|
|
static void test_penalties(
|
|
|
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
|
|
- const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
|
|
|
+ const std::vector<float> & probs_expected, float repeat_penalty, float alpha_frequency, float alpha_presence
|
|
|
) {
|
|
|
- GGML_ASSERT(probs.size() == expected_probs.size());
|
|
|
+ GGML_ASSERT(probs.size() == probs_expected.size());
|
|
|
|
|
|
- const size_t n_vocab = probs.size();
|
|
|
-
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(probs[token_id]);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
-
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
+ sampler_tester tester(probs, probs_expected);
|
|
|
|
|
|
+ const size_t n_vocab = probs.size();
|
|
|
auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
|
|
|
|
|
|
for (size_t i = 0; i < last_tokens.size(); i++) {
|
|
|
llama_sampler_accept(sampler, last_tokens[i]);
|
|
|
}
|
|
|
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
- APPLY(sampler, &cur_p);
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
- DUMP(&cur_p);
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
+ tester.apply(sampler);
|
|
|
+ tester.apply(llama_sampler_init_dist(0));
|
|
|
+ DUMP(&tester.cur_p);
|
|
|
|
|
|
- GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
|
- for (size_t i = 0; i < cur_p.size; i++) {
|
|
|
- GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
|
- }
|
|
|
+ tester.check();
|
|
|
}
|
|
|
|
|
|
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
|
|
|
) {
|
|
|
- std::vector<llama_token_data> cur;
|
|
|
- cur.reserve(n_vocab);
|
|
|
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
|
- const float logit = logf(token_id);
|
|
|
- cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
|
- }
|
|
|
-
|
|
|
- llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
+ sampler_tester tester(n_vocab);
|
|
|
|
|
|
llama_token min_token_id = 0;
|
|
|
const llama_token max_token_id = n_vocab-1;
|
|
|
|
|
|
for (auto s : samplers_sequence) {
|
|
|
switch (s){
|
|
|
- case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
|
|
|
+ case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break;
|
|
|
case 'f': GGML_ABORT("tail_free test not implemented");
|
|
|
case 'y': GGML_ABORT("typical test not implemented");
|
|
|
- case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
|
|
|
- case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
|
|
|
+ case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break;
|
|
|
+ case 'm': tester.apply(llama_sampler_init_min_p(min_p, 1)); break;
|
|
|
case 't': GGML_ABORT("temperature test not implemented");
|
|
|
default : GGML_ABORT("Unknown sampler");
|
|
|
}
|
|
|
|
|
|
- APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
|
|
|
+ tester.apply(llama_sampler_init_dist(0));
|
|
|
+
|
|
|
+ auto & cur_p = tester.cur_p;
|
|
|
|
|
|
const int size = cur_p.size;
|
|
|
|
|
|
@@ -307,21 +280,26 @@ static void test_perf() {
|
|
|
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
|
|
|
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
|
|
|
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
|
|
|
- BENCH(llama_sampler_init_softmax (), data, 32);
|
|
|
}
|
|
|
|
|
|
int main(void) {
|
|
|
ggml_time_init();
|
|
|
|
|
|
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
|
|
|
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
|
|
|
+ test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
|
|
|
+ test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f);
|
|
|
+
|
|
|
+ test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f, 0.0f, 1.0f);
|
|
|
+ test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f, 0.0f, 1.0f);
|
|
|
+
|
|
|
+ test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 1);
|
|
|
+ test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3);
|
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
|
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
|
|
|
|
|
|
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
|
|
|
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
|
|
|
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
|
|
|
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
|
|
|
+ test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 0);
|
|
|
+ test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f}, 0.7f);
|
|
|
+ test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 0.8f);
|
|
|
+ test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
|
|
|
|
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
|
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
|