|
|
@@ -0,0 +1,310 @@
|
|
|
+// Benchmark quantization specific functions on synthetic data
|
|
|
+
|
|
|
+#include "ggml.h"
|
|
|
+
|
|
|
+#undef NDEBUG
|
|
|
+#include <algorithm>
|
|
|
+#include <assert.h>
|
|
|
+#include <functional>
|
|
|
+#include <inttypes.h>
|
|
|
+#include <math.h>
|
|
|
+#include <memory>
|
|
|
+#include <stdio.h>
|
|
|
+#include <string>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+#define MAX_ALIGNMENT 64
|
|
|
+#define QK 32
|
|
|
+#define WARMUP 5
|
|
|
+#define ITERATIONS 10
|
|
|
+
|
|
|
+#define L1_SIZE 32*128
|
|
|
+#define L2_SIZE 32*2048
|
|
|
+#define L3_SIZE 32*20480
|
|
|
+#define MEM_SIZE 32*2048000
|
|
|
+
|
|
|
+struct quantize_perf_params {
|
|
|
+ std::vector<std::string> include_types;
|
|
|
+ std::vector<size_t> test_sizes;
|
|
|
+ size_t alignment_offset = 0;
|
|
|
+ bool op_quantize_row_q_reference = false;
|
|
|
+ bool op_quantize_row_q = false;
|
|
|
+ bool op_dequantize_row_q = false;
|
|
|
+ bool op_quantize_row_q_dot = false;
|
|
|
+ bool op_vec_dot_q = false;
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+#if defined(__x86_64__) || defined(__i386__)
|
|
|
+
|
|
|
+#include <x86intrin.h>
|
|
|
+inline int64_t cpu_cycles() {
|
|
|
+// Rough way to detect new-ish CPUs
|
|
|
+#ifdef __POPCNT__
|
|
|
+ unsigned int dummy;
|
|
|
+ return __rdtscp(&dummy);
|
|
|
+#else
|
|
|
+ return __rdtsc();
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+#define cpu_cycles() 0
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+// Generate synthetic data
|
|
|
+void generate_data(float offset, size_t n, float * dst) {
|
|
|
+ for (size_t i = 0; i < n; i++) {
|
|
|
+ dst[i] = 0.1 + 2*cosf(i + offset);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+float gigabytes_per_second(size_t bytes, int64_t usecs) {
|
|
|
+ return bytes / (float) usecs * 1000000 / (1024*1024*1024);
|
|
|
+}
|
|
|
+
|
|
|
+void * align_with_offset(void * ptr, int offset) {
|
|
|
+ size_t dummy_size = MAX_ALIGNMENT * 4;
|
|
|
+ return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
|
|
|
+}
|
|
|
+
|
|
|
+void benchmark_function(size_t size, size_t q_size, std::function<size_t(void)> function) {
|
|
|
+ int64_t min_time_us = INT64_MAX;
|
|
|
+ int64_t total_time_us = 0;
|
|
|
+ int64_t min_time_cycles = INT64_MAX;
|
|
|
+ int64_t total_time_cycles = 0;
|
|
|
+
|
|
|
+ for (int i = 0; i < WARMUP; i++) {
|
|
|
+ function();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ for (int i = 0; i < ITERATIONS; i++) {
|
|
|
+ const int64_t start_time = ggml_time_us();
|
|
|
+ const int64_t start_cycles = cpu_cycles();
|
|
|
+
|
|
|
+ function();
|
|
|
+
|
|
|
+ const int64_t end_cycles = cpu_cycles();
|
|
|
+ const int64_t end_time = ggml_time_us();
|
|
|
+
|
|
|
+ total_time_cycles += end_cycles - start_cycles;
|
|
|
+ min_time_cycles = std::min(min_time_cycles, end_cycles - start_cycles);
|
|
|
+ total_time_us += end_time - start_time;
|
|
|
+ min_time_us = std::min(min_time_us, end_time - start_time);
|
|
|
+ }
|
|
|
+
|
|
|
+ printf(" min cycles/%d vals : %9.2f\n", QK, QK * min_time_cycles / (float) size);
|
|
|
+ printf(" avg cycles/%d vals : %9.2f\n", QK, QK * total_time_cycles / (float) (size * ITERATIONS));
|
|
|
+ printf(" float32 throughput : %9.2f GB/s\n", gigabytes_per_second(4 * size * ITERATIONS, total_time_us));
|
|
|
+ printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * ITERATIONS, total_time_us));
|
|
|
+}
|
|
|
+
|
|
|
+int main(int argc, char * argv[]) {
|
|
|
+ quantize_perf_params params {};
|
|
|
+
|
|
|
+ // read command line
|
|
|
+
|
|
|
+ bool invalid_param = false;
|
|
|
+ std::string arg;
|
|
|
+ for (int i = 1; i < argc; i++) {
|
|
|
+ arg = argv[i];
|
|
|
+
|
|
|
+ if (arg == "--size") {
|
|
|
+ if (++i >= argc) {
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ size_t size = std::stoi(argv[i]);
|
|
|
+ if (size % 32 != 0) {
|
|
|
+ fprintf(stderr, "error: size %zu not divisible by 32\n", size);
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ params.test_sizes.push_back(size);
|
|
|
+ } else if (arg == "-3") {
|
|
|
+ // quick select sizes that probably fit in CPU caches
|
|
|
+ params.test_sizes.push_back(L1_SIZE);
|
|
|
+ params.test_sizes.push_back(L2_SIZE);
|
|
|
+ params.test_sizes.push_back(L3_SIZE);
|
|
|
+ } else if (arg == "-4") {
|
|
|
+ // quick select cache sizes + memory
|
|
|
+ params.test_sizes.push_back(L1_SIZE);
|
|
|
+ params.test_sizes.push_back(L2_SIZE);
|
|
|
+ params.test_sizes.push_back(L3_SIZE);
|
|
|
+ params.test_sizes.push_back(MEM_SIZE);
|
|
|
+ } else if (arg == "--op") {
|
|
|
+ if (++i >= argc) {
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ std::string op {argv[i]};
|
|
|
+ if (op == "quantize_row_q_reference") {
|
|
|
+ params.op_quantize_row_q_reference = true;
|
|
|
+ } else if (op == "quantize_row_q") {
|
|
|
+ params.op_quantize_row_q = true;
|
|
|
+ } else if (op == "dequantize_row_q") {
|
|
|
+ params.op_dequantize_row_q = true;
|
|
|
+ } else if (op == "quantize_row_q_dot") {
|
|
|
+ params.op_quantize_row_q_dot = true;
|
|
|
+ } else if (op == "vec_dot_q") {
|
|
|
+ params.op_vec_dot_q = true;
|
|
|
+ } else {
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } else if (arg == "--type") {
|
|
|
+ if (++i >= argc) {
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ params.include_types.push_back(argv[i]);
|
|
|
+ } else if (arg == "--alignment-offset") {
|
|
|
+ if (++i >= argc) {
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ int alignment = std::stoi(argv[i]);
|
|
|
+ if (alignment < 0 || alignment > MAX_ALIGNMENT) {
|
|
|
+ fprintf(stderr, "error: aligment-offset must be less than %d\n", MAX_ALIGNMENT);
|
|
|
+ invalid_param = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ params.alignment_offset = alignment;
|
|
|
+ } else {
|
|
|
+ fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (invalid_param) {
|
|
|
+ fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (params.test_sizes.empty()) {
|
|
|
+ params.test_sizes.push_back(L1_SIZE);
|
|
|
+ }
|
|
|
+ if (!(params.op_quantize_row_q_reference || params.op_quantize_row_q || params.op_dequantize_row_q || params.op_quantize_row_q_dot || params.op_vec_dot_q)) {
|
|
|
+ params.op_quantize_row_q_reference = params.op_quantize_row_q = params.op_dequantize_row_q = params.op_quantize_row_q_dot = params.op_vec_dot_q = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::sort(params.test_sizes.begin(), params.test_sizes.end());
|
|
|
+ size_t largest = params.test_sizes.back();
|
|
|
+
|
|
|
+ std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2);
|
|
|
+ std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2);
|
|
|
+ std::vector<uint8_t> test_q1_v(largest*4 + MAX_ALIGNMENT*2);
|
|
|
+ std::vector<uint8_t> test_q2_v(largest*4 + MAX_ALIGNMENT*2);
|
|
|
+ std::vector<uint8_t> test_out_v(largest*4 + MAX_ALIGNMENT*2);
|
|
|
+
|
|
|
+ float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset);
|
|
|
+ float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset);
|
|
|
+ float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset);
|
|
|
+ float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset);
|
|
|
+ float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset);
|
|
|
+
|
|
|
+ generate_data(0, largest, test_data1);
|
|
|
+ generate_data(1, largest, test_data2);
|
|
|
+
|
|
|
+
|
|
|
+ // Initialize GGML, ensures float conversion tables are initialized
|
|
|
+ struct ggml_init_params ggml_params = {
|
|
|
+ /* .mem_size = */ 1*1024,
|
|
|
+ /* .mem_buffer = */ NULL,
|
|
|
+ /* .no_alloc = */ true,
|
|
|
+ };
|
|
|
+ struct ggml_context * ctx = ggml_init(ggml_params);
|
|
|
+
|
|
|
+ for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
|
|
+ ggml_type type = (ggml_type) i;
|
|
|
+ quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
|
|
|
+ if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (qfns.quantize_row_q) {
|
|
|
+ printf("%s\n", ggml_type_name(type));
|
|
|
+
|
|
|
+ if (params.op_quantize_row_q_reference) {
|
|
|
+ printf(" quantize_row_q_reference\n");
|
|
|
+ for (size_t size : params.test_sizes) {
|
|
|
+ printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
|
+ auto quantize_fn = [&](void ) {
|
|
|
+ qfns.quantize_row_q_reference(test_data1, test_q1, size);
|
|
|
+ return test_q1[0];
|
|
|
+ };
|
|
|
+ size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
|
|
+ benchmark_function(size, quantized_size, quantize_fn);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (params.op_quantize_row_q) {
|
|
|
+ printf(" quantize_row_q\n");
|
|
|
+ for (size_t size : params.test_sizes) {
|
|
|
+ printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
|
+ auto quantize_fn = [&](void ) {
|
|
|
+ qfns.quantize_row_q(test_data1, test_q1, size);
|
|
|
+ return test_q1[0];
|
|
|
+ };
|
|
|
+ size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
|
|
+ benchmark_function(size, quantized_size, quantize_fn);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (params.op_dequantize_row_q) {
|
|
|
+ printf(" dequantize_row_q\n");
|
|
|
+ qfns.quantize_row_q(test_data1, test_q1, largest);
|
|
|
+ for (size_t size : params.test_sizes) {
|
|
|
+ printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
|
+ auto quantize_fn = [&](void ) {
|
|
|
+ qfns.dequantize_row_q(test_q1, test_out, size);
|
|
|
+ return test_out[0];
|
|
|
+ };
|
|
|
+ size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
|
|
+ benchmark_function(size, quantized_size, quantize_fn);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (params.op_quantize_row_q_dot) {
|
|
|
+ printf(" quantize_row_q_dot\n");
|
|
|
+ for (size_t size : params.test_sizes) {
|
|
|
+ printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
|
+ auto quantize_fn = [&](void ) {
|
|
|
+ qfns.quantize_row_q_dot(test_data1, test_q1, size);
|
|
|
+ return test_q1[0];
|
|
|
+ };
|
|
|
+ size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
|
|
+ benchmark_function(size, quantized_size, quantize_fn);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (params.op_vec_dot_q) {
|
|
|
+ printf(" vec_dot_q\n");
|
|
|
+ qfns.quantize_row_q(test_data1, test_q1, largest);
|
|
|
+ qfns.quantize_row_q(test_data2, test_q2, largest);
|
|
|
+ for (size_t size : params.test_sizes) {
|
|
|
+ printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
|
+ auto quantize_fn = [&](void ) {
|
|
|
+ float result;
|
|
|
+ qfns.vec_dot_q(size, &result, test_q1, test_q2);
|
|
|
+ return result;
|
|
|
+ };
|
|
|
+ size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
|
|
+ benchmark_function(size, quantized_size, quantize_fn);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_free(ctx);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|