|
@@ -1933,6 +1933,38 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_EXAONE_MOE:
|
|
|
|
|
+ {
|
|
|
|
|
+ hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
|
|
|
|
+ hparams.n_swa = 128;
|
|
|
|
|
+ hparams.set_swa_pattern(4);
|
|
|
|
|
+ hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
|
|
|
|
+ hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
|
|
|
|
+
|
|
|
|
|
+ ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, true);
|
|
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
|
|
|
|
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
|
|
|
|
+
|
|
|
|
|
+ ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
|
|
|
|
|
+
|
|
|
|
|
+ switch (hparams.n_layer) {
|
|
|
|
|
+ case 32: type = LLM_TYPE_30B_A3B; break;
|
|
|
|
|
+ case 48:
|
|
|
|
|
+ case 49: type = LLM_TYPE_235B_A22B; break;
|
|
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
case LLM_ARCH_RWKV6:
|
|
case LLM_ARCH_RWKV6:
|
|
|
case LLM_ARCH_RWKV6QWEN2:
|
|
case LLM_ARCH_RWKV6QWEN2:
|
|
|
{
|
|
{
|
|
@@ -5516,6 +5548,84 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
|
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_EXAONE_MOE:
|
|
|
|
|
+ {
|
|
|
|
|
+ const int64_t n_ff_exp = hparams.n_ff_exp;
|
|
|
|
|
+ const int64_t n_expert = hparams.n_expert;
|
|
|
|
|
+ const int64_t n_expert_used = hparams.n_expert_used;
|
|
|
|
|
+ const int64_t n_ff_shexp = hparams.n_ff_shexp;
|
|
|
|
|
+ const int64_t head_dim = hparams.n_embd_head_k;
|
|
|
|
|
+ const int64_t n_qo_dim = n_head * head_dim;
|
|
|
|
|
+ const int64_t n_kv_dim = n_head_kv * head_dim;
|
|
|
|
|
+
|
|
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ // output
|
|
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
|
|
|
|
+
|
|
|
|
|
+ if (output == NULL) {
|
|
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
|
|
+ int flags = 0;
|
|
|
|
|
+ if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
|
|
|
|
|
+ // skip all tensors in the NextN layers
|
|
|
|
|
+ flags |= TENSOR_SKIP;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ auto & layer = layers[i];
|
|
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, flags);
|
|
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, flags);
|
|
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, flags);
|
|
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, flags);
|
|
|
|
|
+
|
|
|
|
|
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0) | flags);
|
|
|
|
|
+
|
|
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
|
|
|
|
|
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
|
|
|
|
|
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
|
|
|
|
|
+
|
|
|
|
|
+ // dense layers for first n_layer_dense_lead layers or nextn_predict_layers layers at the end
|
|
|
|
|
+ if (i < (int) hparams.n_layer_dense_lead || (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers)) {
|
|
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
|
|
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, flags);
|
|
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
|
|
|
|
|
+ } else {
|
|
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
|
|
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
|
|
|
|
|
+
|
|
|
|
|
+ if (n_expert == 0) {
|
|
|
|
|
+ throw std::runtime_error("n_expert must be > 0");
|
|
|
|
|
+ }
|
|
|
|
|
+ if (n_expert_used == 0) {
|
|
|
|
|
+ throw std::runtime_error("n_expert_used must be > 0");
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, flags);
|
|
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
|
|
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, flags);
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
|
|
|
|
|
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
|
|
|
|
|
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
|
|
|
|
|
+ if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
|
|
|
|
|
+ layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), {2 * n_embd, n_embd}, flags);
|
|
|
|
|
+ layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), {n_embd}, flags);
|
|
|
|
|
+ layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), {n_embd}, flags);
|
|
|
|
|
+
|
|
|
|
|
+ layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), {n_embd}, flags | TENSOR_NOT_REQUIRED);
|
|
|
|
|
+ layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), {n_embd, n_vocab}, flags | TENSOR_NOT_REQUIRED);
|
|
|
|
|
+ layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), {n_embd, n_vocab}, flags | TENSOR_NOT_REQUIRED);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
case LLM_ARCH_RWKV6:
|
|
case LLM_ARCH_RWKV6:
|
|
|
{
|
|
{
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
@@ -7811,6 +7921,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
|
|
llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_EXAONE_MOE:
|
|
|
|
|
+ {
|
|
|
|
|
+ llm = std::make_unique<llm_build_exaone_moe>(*this, params);
|
|
|
|
|
+ } break;
|
|
|
case LLM_ARCH_RWKV6:
|
|
case LLM_ARCH_RWKV6:
|
|
|
{
|
|
{
|
|
|
llm = std::make_unique<llm_build_rwkv6>(*this, params);
|
|
llm = std::make_unique<llm_build_rwkv6>(*this, params);
|
|
@@ -8171,6 +8285,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_NEMOTRON:
|
|
case LLM_ARCH_NEMOTRON:
|
|
|
case LLM_ARCH_EXAONE:
|
|
case LLM_ARCH_EXAONE:
|
|
|
case LLM_ARCH_EXAONE4:
|
|
case LLM_ARCH_EXAONE4:
|
|
|
|
|
+ case LLM_ARCH_EXAONE_MOE:
|
|
|
case LLM_ARCH_MINICPM3:
|
|
case LLM_ARCH_MINICPM3:
|
|
|
case LLM_ARCH_BAILINGMOE2:
|
|
case LLM_ARCH_BAILINGMOE2:
|
|
|
case LLM_ARCH_DOTS1:
|
|
case LLM_ARCH_DOTS1:
|