|
@@ -19,6 +19,61 @@ import gguf
|
|
|
logger = logging.getLogger("gguf-convert-endian")
|
|
logger = logging.getLogger("gguf-convert-endian")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+def byteswap_q4_0(tensor, block_offs):
|
|
|
|
|
+ # Each block_q4_0 consists of an f16 delta (scaling factor) followed by 16 int8 quantizations.
|
|
|
|
|
+
|
|
|
|
|
+ # Byte-Swap f16 sized delta field
|
|
|
|
|
+ delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
|
|
|
|
+ delta.byteswap(inplace=True)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def byteswap_q8_0(tensor, block_offs):
|
|
|
|
|
+ # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
|
|
|
|
|
+
|
|
|
|
|
+ # Byte-Swap f16 sized delta field
|
|
|
|
|
+ delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
|
|
|
|
+ delta.byteswap(inplace=True)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def byteswap_q4_k(tensor, block_offs):
|
|
|
|
|
+ # Each block_q4_k consists of 2 f16 values followed by 140 int8 values.
|
|
|
|
|
+
|
|
|
|
|
+ # Byte-Swap f16 sized fields
|
|
|
|
|
+ delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
|
|
|
|
+ delta.byteswap(inplace=True)
|
|
|
|
|
+
|
|
|
|
|
+ delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16)
|
|
|
|
|
+ delta.byteswap(inplace=True)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def byteswap_q6_k(tensor, block_offs):
|
|
|
|
|
+ # Each block_q6_k consists of 208 int8 values followed by 1 f16 value.
|
|
|
|
|
+
|
|
|
|
|
+ # Byte-Swap f16 sized field
|
|
|
|
|
+ delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16)
|
|
|
|
|
+ delta.byteswap(inplace=True)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+byteswap_tensors = {
|
|
|
|
|
+ gguf.GGMLQuantizationType.Q4_0: {
|
|
|
|
|
+ "block_size": 18, # 18 bytes = <f16 delta scaling factor> + 16 * <int8 quant>
|
|
|
|
|
+ "byteswap_func": byteswap_q4_0,
|
|
|
|
|
+ },
|
|
|
|
|
+ gguf.GGMLQuantizationType.Q8_0: {
|
|
|
|
|
+ "block_size": 34, # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
|
|
|
|
|
+ "byteswap_func": byteswap_q8_0,
|
|
|
|
|
+ },
|
|
|
|
|
+ gguf.GGMLQuantizationType.Q4_K: {
|
|
|
|
|
+ "block_size": 144, # 144 bytes = 2 * <f16 delta scaling factor> + 140 * <int8 quant>
|
|
|
|
|
+ "byteswap_func": byteswap_q4_k,
|
|
|
|
|
+ },
|
|
|
|
|
+ gguf.GGMLQuantizationType.Q6_K: {
|
|
|
|
|
+ "block_size": 210, # 210 bytes = <f16 delta scaling factor> + 208 * <int8 quant>
|
|
|
|
|
+ "byteswap_func": byteswap_q6_k,
|
|
|
|
|
+ },
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
|
|
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
|
|
|
file_endian = reader.endianess.name
|
|
file_endian = reader.endianess.name
|
|
|
if reader.byte_order == 'S':
|
|
if reader.byte_order == 'S':
|
|
@@ -32,13 +87,11 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
|
|
|
sys.exit(0)
|
|
sys.exit(0)
|
|
|
logger.info("* Checking tensors for conversion compatibility")
|
|
logger.info("* Checking tensors for conversion compatibility")
|
|
|
for tensor in reader.tensors:
|
|
for tensor in reader.tensors:
|
|
|
- if tensor.tensor_type not in (
|
|
|
|
|
- gguf.GGMLQuantizationType.F32,
|
|
|
|
|
- gguf.GGMLQuantizationType.F16,
|
|
|
|
|
- gguf.GGMLQuantizationType.Q8_0,
|
|
|
|
|
- gguf.GGMLQuantizationType.Q4_K,
|
|
|
|
|
- gguf.GGMLQuantizationType.Q6_K,
|
|
|
|
|
- ):
|
|
|
|
|
|
|
+ if tensor.tensor_type not in byteswap_tensors and \
|
|
|
|
|
+ tensor.tensor_type not in (
|
|
|
|
|
+ gguf.GGMLQuantizationType.F32,
|
|
|
|
|
+ gguf.GGMLQuantizationType.F16,
|
|
|
|
|
+ ):
|
|
|
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
|
|
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
|
|
|
logger.info(f"* Preparing to convert from {file_endian} to {order}")
|
|
logger.info(f"* Preparing to convert from {file_endian} to {order}")
|
|
|
if args.dry_run:
|
|
if args.dry_run:
|
|
@@ -72,78 +125,29 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
|
|
|
part.byteswap(inplace=True)
|
|
part.byteswap(inplace=True)
|
|
|
|
|
|
|
|
# Byte-swap tensor data if necessary
|
|
# Byte-swap tensor data if necessary
|
|
|
- if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
|
|
|
|
|
- # Handle Q8_0 tensor blocks (block_q8_0)
|
|
|
|
|
- # Specific handling of block_q8_0 is required.
|
|
|
|
|
- # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
|
|
|
|
|
-
|
|
|
|
|
- block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
|
|
|
|
|
-
|
|
|
|
|
- n_blocks = len(tensor.data) // block_size
|
|
|
|
|
- for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
|
|
|
|
|
- block_offs = block_num * block_size
|
|
|
|
|
-
|
|
|
|
|
- # Byte-Swap f16 sized delta field
|
|
|
|
|
- delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
|
|
|
|
- delta.byteswap(inplace=True)
|
|
|
|
|
-
|
|
|
|
|
- # Byte-Swap Q8 weights
|
|
|
|
|
- if block_num % 100000 == 0:
|
|
|
|
|
- inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
|
|
|
|
|
-
|
|
|
|
|
- elif tensor.tensor_type == gguf.GGMLQuantizationType.Q4_K:
|
|
|
|
|
- # Handle Q4_K tensor blocks (block_q4_k)
|
|
|
|
|
- # Specific handling of block_q4_k is required.
|
|
|
|
|
- # Each block_q4_k consists of 2 f16 values followed by 140 int8 values.
|
|
|
|
|
-
|
|
|
|
|
|
|
+ if tensor.tensor_type in byteswap_tensors:
|
|
|
# first flatten structure
|
|
# first flatten structure
|
|
|
|
|
+ oldshape = tensor.data.shape
|
|
|
newshape = 1
|
|
newshape = 1
|
|
|
for i in tensor.data.shape:
|
|
for i in tensor.data.shape:
|
|
|
newshape *= i
|
|
newshape *= i
|
|
|
|
|
|
|
|
tensor.data.resize(newshape)
|
|
tensor.data.resize(newshape)
|
|
|
|
|
|
|
|
- block_size = 144
|
|
|
|
|
- n_blocks = len(tensor.data) // block_size
|
|
|
|
|
- for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
|
|
|
|
|
- block_offs = block_num * block_size
|
|
|
|
|
-
|
|
|
|
|
- # Byte-Swap f16 sized fields
|
|
|
|
|
- delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
|
|
|
|
- delta.byteswap(inplace=True)
|
|
|
|
|
-
|
|
|
|
|
- delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16)
|
|
|
|
|
- delta.byteswap(inplace=True)
|
|
|
|
|
-
|
|
|
|
|
- # Byte-Swap
|
|
|
|
|
- if block_num % 100000 == 0:
|
|
|
|
|
- inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
|
|
|
|
|
-
|
|
|
|
|
- elif tensor.tensor_type == gguf.GGMLQuantizationType.Q6_K:
|
|
|
|
|
- # Handle Q6_K tensor blocks (block_q6_k)
|
|
|
|
|
- # Specific handling of block_q6_k is required.
|
|
|
|
|
- # Each block_q6_k consists of 208 int8 values followed by 1 f16 value.
|
|
|
|
|
-
|
|
|
|
|
- # first flatten structure
|
|
|
|
|
- newshape = 1
|
|
|
|
|
- for i in tensor.data.shape:
|
|
|
|
|
- newshape *= i
|
|
|
|
|
-
|
|
|
|
|
- tensor.data.resize(newshape)
|
|
|
|
|
|
|
+ block_size = byteswap_tensors[tensor.tensor_type]["block_size"]
|
|
|
|
|
+ byteswap_func = byteswap_tensors[tensor.tensor_type]["byteswap_func"]
|
|
|
|
|
|
|
|
- block_size = 210
|
|
|
|
|
n_blocks = len(tensor.data) // block_size
|
|
n_blocks = len(tensor.data) // block_size
|
|
|
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
|
|
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
|
|
|
block_offs = block_num * block_size
|
|
block_offs = block_num * block_size
|
|
|
|
|
|
|
|
- # Byte-Swap f16 sized field
|
|
|
|
|
- delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16)
|
|
|
|
|
- delta.byteswap(inplace=True)
|
|
|
|
|
|
|
+ byteswap_func(tensor, block_offs)
|
|
|
|
|
|
|
|
- # Byte-Swap
|
|
|
|
|
if block_num % 100000 == 0:
|
|
if block_num % 100000 == 0:
|
|
|
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
|
|
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
|
|
|
|
|
|
|
|
|
|
+ # restore old shape in case it's ever used
|
|
|
|
|
+ tensor.data.resize(oldshape)
|
|
|
else:
|
|
else:
|
|
|
# Handle other tensor types
|
|
# Handle other tensor types
|
|
|
tensor.data.byteswap(inplace=True)
|
|
tensor.data.byteswap(inplace=True)
|