Prechádzať zdrojové kódy

CANN: Add L2_NORM op support (#16856)

* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace
TecJesh 2 mesiacov pred
rodič
commit
655cddd174

+ 29 - 0
ggml/src/ggml-cann/aclnn_ops.cpp

@@ -448,6 +448,35 @@ void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
     ggml_cann_release_resources(ctx, norm, acl_src, acl_dst);
 }
 
+void ggml_cann_l2_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
+    ggml_tensor * src = dst->src[0];
+
+    aclTensor * acl_src = ggml_cann_create_tensor(src);
+    aclTensor * acl_dst = ggml_cann_create_tensor(dst);
+
+    size_t  type_size = ggml_type_size(src->type);
+    int64_t n_bytes   = src->ne[3]* src->ne[2]* src->ne[1]* type_size;
+    ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes);
+    void *               buffer       = temp_buffer_allocator.get();
+
+    int64_t div_ne[] = {1, src->ne[1], src->ne[2], src->ne[3]};
+    size_t  div_nb[GGML_MAX_DIMS];
+    div_nb[0] = sizeof(float);
+    for (int i = 1; i < GGML_MAX_DIMS; ++i) {
+        div_nb[i] = div_nb[i - 1] * div_ne[i - 1];
+    }
+    aclTensor *          acl_div      = ggml_cann_create_tensor(buffer, ACL_FLOAT, type_size, div_ne, div_nb, GGML_MAX_DIMS);
+
+    std::vector<int64_t> norm_dims = { 3 };
+    aclIntArray * dims_array = aclCreateIntArray(norm_dims.data(), norm_dims.size());
+
+    float p_value = 2.0f;
+    aclScalar * p_scalar = aclCreateScalar(&p_value, aclDataType::ACL_FLOAT);
+    GGML_CANN_CALL_ACLNN_OP(ctx, Norm, acl_src, p_scalar, dims_array, true, acl_div);
+    GGML_CANN_CALL_ACLNN_OP(ctx, Div, acl_src, acl_div, acl_dst);
+    ggml_cann_release_resources(ctx, dims_array, p_scalar, acl_src, acl_dst, acl_div);
+}
+
 void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
     ggml_tensor * src = dst->src[0];
 

+ 24 - 0
ggml/src/ggml-cann/aclnn_ops.h

@@ -46,6 +46,7 @@
 #include <aclnnop/aclnn_cos.h>
 #include <aclnnop/aclnn_log.h>
 #include <aclnnop/aclnn_sign.h>
+#include <aclnnop/aclnn_norm.h>
 #include "acl_tensor.h"
 #include "common.h"
 
@@ -187,6 +188,29 @@ void ggml_cann_argsort(ggml_backend_cann_context & ctx, ggml_tensor * dst);
  */
 void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
 
+/**
+ * @brief   Computes the L2 Normalization for a ggml tensor using the CANN
+ *          backend.
+ *
+ * @details This function applies the L2 Normalization operation on the
+ *          input tensor `src` and stores the result in the destination tensor
+ *          `dst`. L2 Normalization scales the input tensor such that the
+ *          L2 norm along the specified dimension equals 1. This operation
+ *          is commonly used in neural networks for feature normalization
+ *          and vector scaling.
+ *          The operation is defined as:
+ *          \f[
+ *              \text{out} = \frac{x}{\sqrt{\sum{x^2}}}
+ *          \f]
+ *          The normalization is performed along the last dimension by default.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the normalized values will be stored.
+ * @attention The normalization is performed along the last dimension of the
+ *            input tensor by default.
+ */
+void ggml_cann_l2_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
+
 /**
  * @brief  Computes the Group Normalization for a ggml tensor using the CANN
  *         backend.

+ 4 - 0
ggml/src/ggml-cann/ggml-cann.cpp

@@ -1777,6 +1777,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
         case GGML_OP_GROUP_NORM:
             ggml_cann_group_norm(ctx, dst);
             break;
+        case GGML_OP_L2_NORM:
+            ggml_cann_l2_norm(ctx, dst);
+            break;
         case GGML_OP_CONCAT:
             ggml_cann_concat(ctx, dst);
             break;
@@ -2515,6 +2518,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
                 // value of paddingW should be at most half of kernelW
                 return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
             }
+        case GGML_OP_L2_NORM:
         case GGML_OP_DUP:
         case GGML_OP_SUM:
         case GGML_OP_IM2COL: