|
|
@@ -368,6 +368,7 @@ struct ggml_backend_opencl_context {
|
|
|
cl_program program_mul_mv_f16_f32;
|
|
|
cl_program program_mul_mv_f32_f32;
|
|
|
cl_program program_mul;
|
|
|
+ cl_program program_mul_mat_f16_f32_tiled;
|
|
|
cl_program program_div;
|
|
|
cl_program program_sub;
|
|
|
cl_program program_norm;
|
|
|
@@ -422,6 +423,7 @@ struct ggml_backend_opencl_context {
|
|
|
cl_kernel kernel_mul_mat_f16_f32_1row;
|
|
|
cl_kernel kernel_mul_mat_f16_f32;
|
|
|
cl_kernel kernel_mul_mat_f16_f32_l4;
|
|
|
+ cl_kernel kernel_mul_mat_f16_f32_tiled;
|
|
|
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
|
|
|
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
|
|
|
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
|
|
|
@@ -1015,6 +1017,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
GGML_LOG_CONT(".");
|
|
|
}
|
|
|
|
|
|
+ // mul_mat_f16_f32_tiled
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "mul_mat_f16_f32.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
|
|
|
+#endif
|
|
|
+ backend_ctx->program_mul_mat_f16_f32_tiled =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
// mul
|
|
|
{
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
@@ -4927,6 +4945,58 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor
|
|
|
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
|
|
|
}
|
|
|
|
|
|
+static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
+
|
|
|
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
|
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
+
|
|
|
+ const int M = src0->ne[1];
|
|
|
+ const int N = src1->ne[1];
|
|
|
+ const int K = src0->ne[0];
|
|
|
+
|
|
|
+ cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
|
|
|
+
|
|
|
+ // Tiling parameters. These need to be tuned for optimal performance.
|
|
|
+ // They must match the #defines in the kernel mul_mat_f16_f32.cl.
|
|
|
+ //
|
|
|
+ // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
|
|
|
+ // TPWM / TPWN: Threads per Work-group. This is the work-group size.
|
|
|
+ // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
|
|
|
+ //
|
|
|
+ // The following relationships must hold:
|
|
|
+ // OPWM = TPWM * OPTM
|
|
|
+ // OPWN = TPWN * OPTN
|
|
|
+ //
|
|
|
+ const int OPWM = 64;
|
|
|
+ const int OPWN = 64;
|
|
|
+ const int TPWM = 16;
|
|
|
+ const int TPWN = 8;
|
|
|
+
|
|
|
+ size_t local_work_size[2] = { TPWM, TPWN };
|
|
|
+ size_t global_work_size[2] = {
|
|
|
+ (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
|
|
|
+ (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
|
|
|
+ };
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
|
|
|
+}
|
|
|
+
|
|
|
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
GGML_ASSERT(src0);
|
|
|
GGML_ASSERT(src0->extra);
|
|
|
@@ -4940,6 +5010,18 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
|
|
|
+ if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
|
|
+ src0->ne[1] > 32 && // M > 32
|
|
|
+ src1->ne[1] > 32 && // N > 32
|
|
|
+ src0->ne[0] > 32 && // K > 32
|
|
|
+ src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
|
|
+ src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
|
|
+ ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
|
|
+ backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
|
|
+ ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|