|
|
@@ -10836,7 +10836,7 @@ struct quantize_state_internal {
|
|
|
{}
|
|
|
};
|
|
|
|
|
|
-static void llama_convert_tensor_internal(
|
|
|
+static void llama_tensor_dequantize_internal(
|
|
|
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
|
|
const size_t nelements, const int nthread
|
|
|
) {
|
|
|
@@ -11177,6 +11177,46 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|
|
return new_type;
|
|
|
}
|
|
|
|
|
|
+static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
|
|
+ std::mutex mutex;
|
|
|
+ int counter = 0;
|
|
|
+ size_t new_size = 0;
|
|
|
+ if (nthread < 2) {
|
|
|
+ // single-thread
|
|
|
+ return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix);
|
|
|
+ }
|
|
|
+ auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
|
|
|
+ nrows, n_per_row, imatrix]() {
|
|
|
+ std::array<int64_t, 1 << 4> local_hist = {};
|
|
|
+ const int nrows_per_chunk = chunk_size / n_per_row;
|
|
|
+ size_t local_size = 0;
|
|
|
+ while (true) {
|
|
|
+ std::unique_lock<std::mutex> lock(mutex);
|
|
|
+ int first_row = counter; counter += nrows_per_chunk;
|
|
|
+ if (first_row >= nrows) {
|
|
|
+ if (local_size > 0) {
|
|
|
+ for (int j=0; j<int(local_hist.size()); ++j) {
|
|
|
+ hist_cur[j] += local_hist[j];
|
|
|
+ }
|
|
|
+ new_size += local_size;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ lock.unlock();
|
|
|
+ const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
|
|
+ local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
|
|
|
+ first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
|
|
|
+ }
|
|
|
+ };
|
|
|
+ for (int it = 0; it < nthread - 1; ++it) {
|
|
|
+ workers.emplace_back(compute);
|
|
|
+ }
|
|
|
+ compute();
|
|
|
+ for (auto & w : workers) { w.join(); }
|
|
|
+ workers.clear();
|
|
|
+ return new_size;
|
|
|
+}
|
|
|
+
|
|
|
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
|
|
ggml_type quantized_type;
|
|
|
llama_ftype ftype = params->ftype;
|
|
|
@@ -11289,7 +11329,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
|
|
|
std::vector<std::thread> workers;
|
|
|
workers.reserve(nthread);
|
|
|
- std::mutex mutex;
|
|
|
|
|
|
int idx = 0;
|
|
|
|
|
|
@@ -11403,7 +11442,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
|
|
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
|
|
} else {
|
|
|
- llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
|
|
+ llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
|
|
f32_data = (float *) f32_conv_buf.data();
|
|
|
}
|
|
|
|
|
|
@@ -11424,41 +11463,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
|
|
|
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
|
|
|
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
|
|
|
- if (nthread_use < 2) {
|
|
|
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
|
|
|
- } else {
|
|
|
- int counter = 0;
|
|
|
- new_size = 0;
|
|
|
- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
|
|
|
- nrows, n_per_row, imatrix]() {
|
|
|
- std::array<int64_t, 1 << 4> local_hist = {};
|
|
|
- const int nrows_per_chunk = chunk_size / n_per_row;
|
|
|
- size_t local_size = 0;
|
|
|
- while (true) {
|
|
|
- std::unique_lock<std::mutex> lock(mutex);
|
|
|
- int first_row = counter; counter += nrows_per_chunk;
|
|
|
- if (first_row >= nrows) {
|
|
|
- if (local_size > 0) {
|
|
|
- for (int j=0; j<int(local_hist.size()); ++j) {
|
|
|
- hist_cur[j] += local_hist[j];
|
|
|
- }
|
|
|
- new_size += local_size;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- lock.unlock();
|
|
|
- const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
|
|
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
|
|
|
- first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
|
|
|
- }
|
|
|
- };
|
|
|
- for (int it = 0; it < nthread_use - 1; ++it) {
|
|
|
- workers.emplace_back(compute);
|
|
|
- }
|
|
|
- compute();
|
|
|
- for (auto & w : workers) { w.join(); }
|
|
|
- workers.clear();
|
|
|
- }
|
|
|
+ new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, hist_cur.data(), imatrix, workers, nthread_use);
|
|
|
|
|
|
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
|
|
int64_t tot_count = 0;
|