|
|
@@ -936,6 +936,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
hparams.causal_attn = false;
|
|
|
}
|
|
|
break;
|
|
|
+ case LLM_ARCH_LLADA_MOE:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ // diffusion language model uses non-causal attention
|
|
|
+ hparams.causal_attn = false;
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 16: type = LLM_TYPE_A1_7B; break;
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_QWEN2MOE:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
|
|
@@ -2387,6 +2399,40 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
}
|
|
|
}
|
|
|
break;
|
|
|
+ case LLM_ARCH_LLADA_MOE:
|
|
|
+ {
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
|
|
|
+ GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ auto & layer = layers[i];
|
|
|
+
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
|
|
|
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
|
|
|
+
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
|
|
+
|
|
|
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
|
|
+
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_LLAMA4:
|
|
|
{
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
@@ -12444,6 +12490,132 @@ struct llm_build_olmoe : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llm_build_llada_moe : public llm_graph_context {
|
|
|
+ llm_build_llada_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ auto * inp_attn = build_attn_inp_no_cache();
|
|
|
+
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ // self_attention
|
|
|
+ {
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+
|
|
|
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(Qcur, "Qcur_normed", il);
|
|
|
+
|
|
|
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(Kcur, "Kcur_normed", il);
|
|
|
+
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, Qcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, Kcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ cur = build_attn(inp_attn,
|
|
|
+ model.layers[il].wo, NULL,
|
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1 && inp_out_ids) {
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // MoE branch
|
|
|
+ cur = build_norm(ffn_inp,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ cur = build_moe_ffn(cur,
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
+ nullptr,
|
|
|
+ n_expert, n_expert_used,
|
|
|
+ LLM_FFN_SILU, false,
|
|
|
+ false, 0.0,
|
|
|
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
|
+ il);
|
|
|
+ cb(cur, "ffn_moe_out", il);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = build_norm(cur,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
struct llm_build_openelm : public llm_graph_context {
|
|
|
llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
@@ -18636,6 +18808,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|
|
//case LLM_ARCH_GEMMA_EMBEDDING: // TODO: disabled until the cacheless SWA logic is fixed [TAG_NO_CACHE_ISWA]
|
|
|
case LLM_ARCH_DREAM:
|
|
|
case LLM_ARCH_LLADA:
|
|
|
+ case LLM_ARCH_LLADA_MOE:
|
|
|
{
|
|
|
res = nullptr;
|
|
|
} break;
|
|
|
@@ -18841,6 +19014,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
llm = std::make_unique<llm_build_llada>(*this, params);
|
|
|
}
|
|
|
break;
|
|
|
+ case LLM_ARCH_LLADA_MOE:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_llada_moe>(*this, params);
|
|
|
+ }
|
|
|
+ break;
|
|
|
case LLM_ARCH_QWEN2VL:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
|
|
|
@@ -19307,6 +19485,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_QWEN2MOE:
|
|
|
case LLM_ARCH_QWEN3:
|
|
|
case LLM_ARCH_QWEN3MOE:
|
|
|
+ case LLM_ARCH_LLADA_MOE:
|
|
|
case LLM_ARCH_OLMO2:
|
|
|
case LLM_ARCH_OLMOE:
|
|
|
case LLM_ARCH_PHI2:
|