|
|
@@ -33,6 +33,7 @@
|
|
|
#undef MAX
|
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
+#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
|
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
|
|
|
|
@@ -396,6 +397,8 @@ struct ggml_backend_opencl_context {
|
|
|
cl_program program_conv_2d_f16_f32;
|
|
|
cl_program program_tsembd;
|
|
|
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
|
|
|
+ cl_program program_mul_mm_f32_f32_l4_lm;
|
|
|
+ cl_program program_mul_mm_f16_f32_l4_lm;
|
|
|
|
|
|
cl_kernel kernel_add, kernel_add_row;
|
|
|
cl_kernel kernel_mul, kernel_mul_row;
|
|
|
@@ -450,6 +453,8 @@ struct ggml_backend_opencl_context {
|
|
|
cl_kernel kernel_conv_2d_f16_f32;
|
|
|
cl_kernel kernel_timestep_embedding;
|
|
|
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
|
|
|
+ cl_kernel kernel_mul_mm_f32_f32_l4_lm;
|
|
|
+ cl_kernel kernel_mul_mm_f16_f32_l4_lm;
|
|
|
|
|
|
std::vector<ProfilingInfo> profiling_info;
|
|
|
|
|
|
@@ -1040,6 +1045,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
GGML_LOG_CONT(".");
|
|
|
}
|
|
|
|
|
|
+ // mul_mm_f32_f32_l4_lm
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "mul_mm_f32_f32_l4_lm.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
|
|
|
+#endif
|
|
|
+ backend_ctx->program_mul_mm_f32_f32_l4_lm =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
+ // mul_mm_f16_f32_l4_lm
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "mul_mm_f16_f32_l4_lm.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
|
|
|
+#endif
|
|
|
+ backend_ctx->program_mul_mm_f16_f32_l4_lm =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
// mul
|
|
|
{
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
@@ -5297,18 +5334,6 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
|
|
|
- if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
|
|
- src0->ne[1] > 32 && // M > 32
|
|
|
- src1->ne[1] > 32 && // N > 32
|
|
|
- src0->ne[0] > 32 && // K > 32
|
|
|
- src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
|
|
- src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
|
|
- ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
|
|
- backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
|
|
- ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
@@ -5655,6 +5680,101 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|
|
} // if (ne01 && ne1)
|
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
|
|
|
+ // GEMM using local memory
|
|
|
+ // Current BK = 16, so ne00 % 16 == 0
|
|
|
+ if (ggml_is_contiguous(src0) &&
|
|
|
+ ggml_is_contiguous(src1) &&
|
|
|
+ src1t == GGML_TYPE_F32 &&
|
|
|
+ ne00 % 16 == 0 &&
|
|
|
+ ne11 > 1) {
|
|
|
+ switch(src0t) {
|
|
|
+ case GGML_TYPE_F32: {
|
|
|
+ kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
|
|
|
+ nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
|
|
+
|
|
|
+ int batch_stride_a = ne00*ne01;
|
|
|
+ int batch_stride_b = ne10*ne11;
|
|
|
+ int batch_stride_d = ne0*ne1;
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
|
|
+
|
|
|
+ // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
|
|
+ size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
|
|
+ size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case GGML_TYPE_F16: {
|
|
|
+ kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
|
|
|
+ nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
|
|
+
|
|
|
+ int batch_stride_a = ne00*ne01;
|
|
|
+ int batch_stride_b = ne10*ne11;
|
|
|
+ int batch_stride_d = ne0*ne1;
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
|
|
+
|
|
|
+ // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
|
|
+ size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
|
|
+ size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
|
|
+ src0->ne[1] > 32 && // M > 32
|
|
|
+ src1->ne[1] > 32 && // N > 32
|
|
|
+ src0->ne[0] > 32 && // K > 32
|
|
|
+ src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
|
|
+ src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
|
|
+ ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
|
|
+ backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
|
|
+ ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
if (!ggml_is_transposed(src0) &&
|
|
|
!ggml_is_transposed(src1) &&
|
|
|
src1t == GGML_TYPE_F32 &&
|