|
|
@@ -146,6 +146,7 @@ static std::string format(const char * fmt, ...) {
|
|
|
|
|
|
enum llm_arch {
|
|
|
LLM_ARCH_LLAMA,
|
|
|
+ LLM_ARCH_DECI,
|
|
|
LLM_ARCH_FALCON,
|
|
|
LLM_ARCH_BAICHUAN,
|
|
|
LLM_ARCH_GROK,
|
|
|
@@ -203,6 +204,7 @@ enum llm_arch {
|
|
|
|
|
|
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_LLAMA, "llama" },
|
|
|
+ { LLM_ARCH_DECI, "deci" },
|
|
|
{ LLM_ARCH_FALCON, "falcon" },
|
|
|
{ LLM_ARCH_GROK, "grok" },
|
|
|
{ LLM_ARCH_GPT2, "gpt2" },
|
|
|
@@ -674,6 +676,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
|
|
},
|
|
|
},
|
|
|
+ {
|
|
|
+ LLM_ARCH_DECI,
|
|
|
+ {
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
|
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
|
|
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
|
|
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
|
|
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
|
|
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
|
|
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
|
|
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
|
|
+ },
|
|
|
+ },
|
|
|
{
|
|
|
LLM_ARCH_BAICHUAN,
|
|
|
{
|
|
|
@@ -5694,7 +5722,7 @@ static void llm_load_hparams(
|
|
|
|
|
|
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
|
|
|
|
|
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
|
|
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
|
|
|
if (hparams.n_rot != hparams.n_embd_head_k) {
|
|
|
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
|
|
}
|
|
|
@@ -5734,6 +5762,15 @@ static void llm_load_hparams(
|
|
|
}
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_DECI:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 32: model.type = e_model::MODEL_7B; break;
|
|
|
+ case 80: model.type = e_model::MODEL_70B; break;
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_MINICPM:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
@@ -7939,6 +7976,68 @@ static bool llm_load_tensors(
|
|
|
}
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_DECI:
|
|
|
+ {
|
|
|
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ // if output is NULL, init from the input tok embed
|
|
|
+ if (model.output == NULL) {
|
|
|
+ model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ auto & layer = model.layers[i];
|
|
|
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
|
|
|
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
|
|
|
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
|
|
|
+ const int64_t n_ff = hparams.n_ff(i);
|
|
|
+ const int64_t n_head = hparams.n_head(i);
|
|
|
+ const int64_t n_head_kv = hparams.n_head_kv(i);
|
|
|
+
|
|
|
+ if (n_head_kv == 0 && n_head > 0) {
|
|
|
+ // linear attention for DeciLMCausalModel
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ }
|
|
|
+ else if (n_head_kv > 0) {
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // optional bias tensors
|
|
|
+ layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
|
|
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ }
|
|
|
+
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+
|
|
|
+ // optional MLP bias
|
|
|
+ layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_MINICPM3:
|
|
|
{
|
|
|
const int64_t n_embd_head_qk_rope = hparams.n_rot;
|
|
|
@@ -11308,6 +11407,167 @@ struct llm_build_context {
|
|
|
return gf;
|
|
|
}
|
|
|
|
|
|
+ struct ggml_cgraph * build_deci() {
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
|
+
|
|
|
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
|
|
+ int32_t n_tokens = this->n_tokens;
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ struct ggml_tensor * cur;
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
+
|
|
|
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
+ const int64_t n_head_kv = hparams.n_head_kv(il);
|
|
|
+ const int64_t n_head = hparams.n_head(il);
|
|
|
+
|
|
|
+ if (n_head == 0) {
|
|
|
+ // attention-free layer of Llama-3_1-Nemotron-51B
|
|
|
+ cur = inpL;
|
|
|
+ } else {
|
|
|
+ // norm
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (n_head > 0 && n_head_kv == 0) {
|
|
|
+ // "linear attention" of Llama-3_1-Nemotron-51B
|
|
|
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
|
|
+ cb(cur, "wo", il);
|
|
|
+ } else if (n_head > 0) {
|
|
|
+ // self-attention
|
|
|
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
|
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
|
|
|
+
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ if (model.layers[il].bq) {
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ if (model.layers[il].bk) {
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ if (model.layers[il].bv) {
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1) {
|
|
|
+ // skip computing output for unused tokens
|
|
|
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+ n_tokens = n_outputs;
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ // For Granite architecture
|
|
|
+ if (hparams.f_residual_scale) {
|
|
|
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
+ }
|
|
|
+
|
|
|
+ // modified to support attention-free layer of Llama-3_1-Nemotron-51B
|
|
|
+ struct ggml_tensor * ffn_inp = cur;
|
|
|
+ if (n_head > 0) {
|
|
|
+ ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ if (model.layers[il].ffn_gate_inp == nullptr) {
|
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ // For Granite architecture
|
|
|
+ if (hparams.f_residual_scale) {
|
|
|
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
|
+
|
|
|
+ // For Granite architecture
|
|
|
+ if (hparams.f_logit_scale) {
|
|
|
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
|
|
+ }
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+
|
|
|
+ return gf;
|
|
|
+ }
|
|
|
+
|
|
|
struct ggml_cgraph * build_baichuan() {
|
|
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
|
|
|
|
@@ -17422,6 +17682,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
|
result = llm.build_llama();
|
|
|
} break;
|
|
|
+ case LLM_ARCH_DECI:
|
|
|
+ {
|
|
|
+ result = llm.build_deci();
|
|
|
+ } break;
|
|
|
case LLM_ARCH_BAICHUAN:
|
|
|
{
|
|
|
result = llm.build_baichuan();
|
|
|
@@ -20797,6 +21061,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
|
|
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
|
|
case LLM_ARCH_LLAMA:
|
|
|
+ case LLM_ARCH_DECI:
|
|
|
case LLM_ARCH_BAICHUAN:
|
|
|
case LLM_ARCH_STARCODER:
|
|
|
case LLM_ARCH_PLAMO:
|