Просмотр исходного кода

llama : MiniCPM support tied embeddings (#7664)

* support lm_head

* remove the code block

---------

Co-authored-by: zhangkaihuo <zhangkaihuo@modelbest.cn>
zhangkaihuo 1 год назад
Родитель
Сommit
6f28a333c1
2 измененных файлов с 6 добавлено и 7 удалено
  1. 1 0
      gguf-py/gguf/constants.py
  2. 5 7
      llama.cpp

+ 1 - 0
gguf-py/gguf/constants.py

@@ -645,6 +645,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
     ],
     MODEL_ARCH.MINICPM: [
         MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT,
         MODEL_TENSOR.OUTPUT_NORM,
         MODEL_TENSOR.ROPE_FREQS,
         MODEL_TENSOR.ATTN_NORM,

+ 5 - 7
llama.cpp

@@ -5124,12 +5124,10 @@ static bool llm_load_tensors(
                     // output
                     {
                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
-                        if (model.arch != LLM_ARCH_MINICPM){
-                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
-                            // if output is NULL, init from the input tok embed
-                            if (model.output == NULL) {
-                                model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
-                            }
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                         }
                     }
 
@@ -10212,7 +10210,7 @@ struct llm_build_context {
         cb(cur, "lmhead_scaling", -1);
 
         // lm_head
-        cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
+        cur = ggml_mul_mat(ctx0, model.output, cur);
         cb(cur, "result_output", -1);
 
         ggml_build_forward_expand(gf, cur);