|
|
@@ -9,6 +9,7 @@
|
|
|
#include <fstream>
|
|
|
#include <cmath>
|
|
|
#include <cctype>
|
|
|
+#include <algorithm>
|
|
|
|
|
|
struct quant_option {
|
|
|
std::string name;
|
|
|
@@ -16,7 +17,7 @@ struct quant_option {
|
|
|
std::string desc;
|
|
|
};
|
|
|
|
|
|
-static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|
|
+static const std::vector<quant_option> QUANT_OPTIONS = {
|
|
|
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
|
|
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
|
|
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
|
|
@@ -105,7 +106,8 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|
|
//
|
|
|
[[noreturn]]
|
|
|
static void usage(const char * executable) {
|
|
|
- printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
|
|
+ printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type]\n", executable);
|
|
|
+ printf(" [--token-embedding-type] [--tensor-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
|
|
|
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
|
|
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
|
|
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
|
|
@@ -114,6 +116,8 @@ static void usage(const char * executable) {
|
|
|
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
|
|
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
|
|
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
|
|
+ printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
|
|
|
+ printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
|
|
|
printf(" --keep-split: will generate quantized model in the same shards as input\n");
|
|
|
printf(" --override-kv KEY=TYPE:VALUE\n");
|
|
|
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
|
|
@@ -244,6 +248,107 @@ static ggml_type parse_ggml_type(const char * arg) {
|
|
|
return GGML_TYPE_COUNT;
|
|
|
}
|
|
|
|
|
|
+// Allowed tensors for arbitrary quantization with --tensor-type option
|
|
|
+static const std::vector<std::string> ALLOWED_TENSOR_TYPE = {
|
|
|
+ "attn_k",
|
|
|
+ "attn_kv_a_mqa",
|
|
|
+ "attn_kv_b",
|
|
|
+ "attn_o",
|
|
|
+ "attn_output",
|
|
|
+ "attn_q",
|
|
|
+ "attn_q_a",
|
|
|
+ "attn_q_b",
|
|
|
+ "attn_qkv",
|
|
|
+ "attn_v",
|
|
|
+ "channel_mix_key",
|
|
|
+ "channel_mix_receptance",
|
|
|
+ "channel_mix_value",
|
|
|
+ "cls",
|
|
|
+ "cls.output",
|
|
|
+ "cross_attn_k",
|
|
|
+ "cross_attn_o",
|
|
|
+ "cross_attn_q",
|
|
|
+ "cross_attn_v",
|
|
|
+ "ffn_act",
|
|
|
+ "ffn_down",
|
|
|
+ "ffn_down_exps",
|
|
|
+ "ffn_down_shexp",
|
|
|
+ "ffn_gate",
|
|
|
+ "ffn_gate_exps",
|
|
|
+ "ffn_gate_shexp",
|
|
|
+ "ffn_up",
|
|
|
+ "ffn_up_exps",
|
|
|
+ "ffn_up_shexp",
|
|
|
+ "ssm_in",
|
|
|
+ "ssm_out",
|
|
|
+ "time_mix_gate",
|
|
|
+ "time_mix_key",
|
|
|
+ "time_mix_output",
|
|
|
+ "time_mix_receptance",
|
|
|
+ "time_mix_value",
|
|
|
+};
|
|
|
+
|
|
|
+// changes to this struct must be replicated in llama-quant.cpp
|
|
|
+struct tensor_quantization {
|
|
|
+ std::string name;
|
|
|
+ ggml_type quant = GGML_TYPE_COUNT;
|
|
|
+};
|
|
|
+
|
|
|
+static bool parse_tensor_type(const char * data, std::vector<tensor_quantization> & tensor_type) {
|
|
|
+ const char * sep = strchr(data, '=');
|
|
|
+ if (sep == nullptr) {
|
|
|
+ printf("\n%s: malformed tensor type '%s'\n\n", __func__, data);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ const size_t tn_len = sep - data;
|
|
|
+ if (tn_len == 0) {
|
|
|
+ printf("\n%s: missing tensor name\n\n", __func__);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (const size_t qt_len = strlen(sep); qt_len == 1) {
|
|
|
+ printf("\n%s: missing quantization type\n\n", __func__);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::string tn(data, tn_len);
|
|
|
+ std::transform(tn.begin(), tn.end(), tn.begin(), tolower);
|
|
|
+ sep++;
|
|
|
+ const std::string qt(sep);
|
|
|
+
|
|
|
+ bool found = false;
|
|
|
+ for (const auto & allowed : ALLOWED_TENSOR_TYPE) {
|
|
|
+ std::string tensor;
|
|
|
+ tensor = tn.rfind('.') != std::string::npos ? tn.substr(tn.rfind('.') + 1) : tn;
|
|
|
+ // handle special case of cls.output
|
|
|
+ std::string cls_output = "cls.output";
|
|
|
+ if (tn.find(cls_output) != std::string::npos) {
|
|
|
+ tensor = "cls.output";
|
|
|
+ }
|
|
|
+ // check if an allowed tensor exists and it's at the end of the kv string
|
|
|
+ if (tensor == allowed) {
|
|
|
+ found = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!found) {
|
|
|
+ printf("\n%s: invalid tensor name '%s'\n\n", __func__, tn.c_str());
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (parse_ggml_type(qt.c_str()) == GGML_TYPE_COUNT) {
|
|
|
+ printf("\n%s: invalid quantization type '%s'\n\n", __func__, qt.c_str());
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ tensor_quantization tqz;
|
|
|
+ tqz.name = tn;
|
|
|
+ tqz.quant = parse_ggml_type(qt.c_str());
|
|
|
+ tensor_type.emplace_back(std::move(tqz));
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
int main(int argc, char ** argv) {
|
|
|
if (argc < 3) {
|
|
|
usage(argv[0]);
|
|
|
@@ -255,6 +360,7 @@ int main(int argc, char ** argv) {
|
|
|
std::string imatrix_file;
|
|
|
std::vector<std::string> included_weights, excluded_weights;
|
|
|
std::vector<llama_model_kv_override> kv_overrides;
|
|
|
+ std::vector<tensor_quantization> tensor_types;
|
|
|
|
|
|
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
|
|
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
|
|
@@ -277,6 +383,10 @@ int main(int argc, char ** argv) {
|
|
|
} else {
|
|
|
usage(argv[0]);
|
|
|
}
|
|
|
+ } else if (strcmp(argv[arg_idx], "--tensor-type") == 0) {
|
|
|
+ if (arg_idx == argc-1 || !parse_tensor_type(argv[++arg_idx], tensor_types)) {
|
|
|
+ usage(argv[0]);
|
|
|
+ }
|
|
|
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
|
|
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
|
|
usage(argv[0]);
|
|
|
@@ -361,6 +471,9 @@ int main(int argc, char ** argv) {
|
|
|
kv_overrides.back().key[0] = 0;
|
|
|
params.kv_overrides = &kv_overrides;
|
|
|
}
|
|
|
+ if (!tensor_types.empty()) {
|
|
|
+ params.tensor_types = &tensor_types;
|
|
|
+ }
|
|
|
|
|
|
llama_backend_init();
|
|
|
|