|
|
@@ -768,6 +768,8 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|
|
// Iterate and write all the keys first, each row is a cell
|
|
|
// Get whole range at a time
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
+ // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
|
|
|
+ if (r_l[il] == nullptr) continue;
|
|
|
|
|
|
// Write key type
|
|
|
const int32_t r_type_i = (int32_t)r_l[il]->type;
|
|
|
@@ -787,6 +789,8 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|
|
|
|
|
if (!s_trans) {
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
+ // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
|
|
|
+ if (s_l[il] == nullptr) continue;
|
|
|
|
|
|
// Write value type
|
|
|
const int32_t s_type_i = (int32_t)s_l[il]->type;
|
|
|
@@ -807,6 +811,9 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|
|
// When v is transposed, we also need the element size and get the element ranges from each row
|
|
|
const uint32_t mem_size = size;
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
+ // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
|
|
|
+ if (s_l[il] == nullptr) continue;
|
|
|
+
|
|
|
const uint32_t n_embd_s = hparams.n_embd_s();
|
|
|
|
|
|
// Write value type
|
|
|
@@ -951,6 +958,8 @@ bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell
|
|
|
|
|
|
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
+ // skip null layers
|
|
|
+ if (r_l[il] == nullptr) continue;
|
|
|
|
|
|
// Read type of key
|
|
|
int32_t r_type_i_ref;
|
|
|
@@ -978,11 +987,14 @@ bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell
|
|
|
|
|
|
if (!s_trans) {
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
+ // skip null layers
|
|
|
+ if (s_l[il] == nullptr) continue;
|
|
|
|
|
|
// Read type of value
|
|
|
int32_t s_type_i_ref;
|
|
|
io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
|
|
|
const int32_t s_type_i = (int32_t)s_l[il]->type;
|
|
|
+
|
|
|
if (s_type_i != s_type_i_ref) {
|
|
|
LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
|
|
|
return false;
|
|
|
@@ -1005,6 +1017,9 @@ bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell
|
|
|
} else {
|
|
|
// For each layer, read the values for each cell (transposed)
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
+ // skip null layers
|
|
|
+ if (s_l[il] == nullptr) continue;
|
|
|
+
|
|
|
const uint32_t n_embd_s = hparams.n_embd_s();
|
|
|
|
|
|
// Read type of value
|